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1. Introduction

Maximal supergravity in four space-time dimensions contains 28 vector gauge fields, which,
in principle, can couple to charges assigned to the various fields. To preserve supersymmetry
these gauge field interactions must be accompanied by masslike terms for the fermions and
a scalar potential, as was first exhibited in the gauging of SO(8) []. In general it is far from
obvious which gauge groups are admissible and will lead to a supersymmetric deformation
of the ungauged Lagrangian. Initially non-compact versions and/or contractions of SO(8)
were shown to also lead to viable gaugings [f], followed, much more recently, by the so-
called ‘flat’ gauge groups [fj] that one obtains upon Scherk-Schwarz reductions [fl, f] of
higher-dimensional theories, as well as by several other non-semisimple groups [f.

In [[j] we presented an ab initio analysis of all possible gaugings of four-dimensional
maximal supergravity (this was reviewed in [§). The gauge group, Gy, is a subgroup of
the E7(7) duality group that leaves the combined field equations and Bianchi identities
invariant. The decomposition of the gauge group generators in terms of the E7) gen-
erators is parametrized by the so-called embedding tensor ©, which determines not only
the gauge-covariant derivatives, but also the so-called T-tensors that define the masslike



terms and the scalar potential. The admissible embedding tensors can be characterized
group-theoretically and this enables a systematic discussion of all possible gaugings. In [f],
several examples were presented which demonstrate how one can conveniently analyze
various gaugings in this way. Another example, which is relevant for IIB flux compactifica-
tions, was worked out in [f]. The same strategy has been applied to maximal supergravity
in various space-time dimensions [L(—[LJ], as well as to theories with a lower number of

supercharges [[[4], [7].

In this paper we present a complete analysis of all gaugings of maximally supersym-
metric four-dimensional supergravity. We establish that a gauging is in fact completely
characterized by the embedding tensor, which is subject to two constraints. Omne con-
straint, which is linear, follows from supersymmetry and implies that the embedding tensor
belongs to the 912 representation of Ez(7). A second constraint is quadratic and implies
that the square of the embedding tensor does not contain the 133 4+ 8645 representation.
This constraint ensures the closure of the gauge group. Furthermore it implies that the
embedding tensor is gauge invariant, and it ensures that the charges can always be chosen
in the electric subsector upon a suitable electric/magnetic duality transformation. In this
approach one can establish the consistency of the gauging prior to evaluating the explicit
Lagrangian. Any given embedding tensor that satisfies these two constraints, defines a
consistent supersymmetric and gauge invariant Lagrangian. In fact, we will present uni-
versal expressions for the Lagrangian and the supersymmetry transformations of gauged
N = 8 supergravities, encoded in terms of the embedding tensor. The fermionic masslike
terms and the scalar potential have a unique structure in terms of the so-called T-tensor,
which is linearly proportional to the embedding tensor. Here we should perhaps empha-
size that we our results are obtained entirely in a four-dimensional setting. As is well
known, gaugings can originate from the compactification of a higher-dimensional theory
with or without fluxes, or from Scherk-Schwarz reductions. But whatever their origin,
the four-dimensional truncations belong to the class of theories discussed in this paper,
provided they are maximally supersymmetric (irrespective of whether the theory will have
maximally supersymmetric groundstates).

A gauging can involve both magnetic and electric charges, each of which will require
corresponding gauge fields. These can be accommodated by making use of a new formal-
ism [[[d], which, in the case at hand, requires the presence of tensor gauge fields trans-
forming in the (adjoint) 133 representation of E(7). Neither the magnetic vector fields
nor the tensor fields lead to additional degrees of freedom owing to the presence of extra
gauge invariances associated with these fields. Because of the extra fields, any embedding
tensor that satisfies the above constraints will lead to a consistent gauge invariant and
supersymmetric theory, irrespective of whether the charges are electric or magnetic.

There are two characteristic features that play an important role in this paper.
One that is typical of four-dimensional theories with vector gauge fields, concerns elec-
tric/magnetic duality [[]]. For zero gauge-coupling constant, the gauge fields transform
in the 56 representation of Ez(7), and decompose into 28 electric gauge fields and their
28 magnetic duals. The magnetic duals do not appear in the Lagrangian, so that the



Lagrangian cannot be invariant under E7(7), but the combined equations of motion and
Bianchi identities of the vector fields do transform covariantly in the 56 representation [[L§].
In fact the rigid symmetry group of the Lagrangian is a subgroup of Ez7) under whose
action electric gauge fields are transformed into electric gauge fields. This group is not
unique. It depends on the embedding of E;(7) inside the larger duality group Sp(56;R),
which determines which gauge fields belonging to the 56 representation play the role of elec-
tric and which ones the role of magnetic gauge fields. The choice of the electric/magnetic
frame fixes the rigid symmetry group of the ungauged Lagrangian, and different choices
yield in general different Lagrangians which are not related to each other by local field
redefinitions.

The conventional approach for introducing local gauge invariance relies on the rigid
symmetry group of the ungauged Lagrangian as the gauge group has to be a subgroup
thereof. The procedure requires the introduction of minimal couplings involving only the
electric vector fields, and therefore it explicitly breaks the original E7(7) duality covariance
of the field equations and Bianchi identities. The advantage of the formulation proposed
in [[[ is two-fold. On the one hand, minimal couplings involve both electric and magnetic
vector fields in symplectically invariant combinations with the corresponding components
of the embedding tensor. This ensures that, irrespective of the gauge group, the E7
invariance can formally be restored at the level of the field equations and Bianchi identities,
provided the embedding tensor is treated as a “spurionic” object transforming under E7(7)
and subject to the two aforementioned group-theoretical constraints. On the other hand,
we are no longer restricted in the choice of the gauge group by the rigid symmetries of
the original ungauged Lagrangian. Regardless of the electric/magnetic frame, we may
introduce any gauge group contained in E77) corresponding to an embedding tensor that
satisfies the two E7(7)-covariant constraints. If this gauge group is not a subgroup of the
rigid symmetry group of the ungauged Lagrangian, the embedding tensor will typically
lead to magnetic charges and magnetic gauge fields together with the tensor fields. The
latter will play a crucial role in realizing the gauge invariance of the final Lagrangian. An
interesting feature of the resulting theory is that the scalar potential is described by means
of a universal formula which is independent of the electric/magnetic duality frame.

A second, more general, feature of maximal supergravity is that the scalar fields
parametrize a symmetric space, in this case the coset space E7(7)/ SU(8). The standard
treatment of the corresponding gauged nonlinear sigma models is based on a formulation
in which the group SU(8) is realized as a local invariance which acts on the spinor fields
and the scalars; the corresponding connections are composite fields. A gauging is based
on a group G, C E(7) whose connections are provided by (some of the) elementary vector
gauge fields of the supergravity theory. The coupling constant associated with the gauge
group will be denoted by g. One can impose a gauge condition with respect to the local
SU(8) invariance which amounts to fixing a coset representative for the coset space. In
that case the E7(7)-symmetries will act nonlinearly on the fields and these nonlinearities
make many calculations intractable. Because it is much more convenient to work with
symmetries that are realized linearly, the best strategy is therefore to postpone this gauge
fixing until the end. This strategy was already adopted in [[l]], but in this paper we find it



convenient to introduce a slightly different definition of the coset representative.

Let us end this introduction by making some remarks on the physical significance
of the embedding tensor. As previously anticipated, the low-energy dynamics of any
superstring/M-theory compactification that admits a four dimensional N = 8 effective
supergravity description, has to be contained within the class of theories discussed in the
present paper. From the higher-dimensional perspective a gauging is in general char-
acterized by constant background quantities which may be related to fluxes of higher-
dimensional field strengths across cycles of the compactification manifold (form-fluxes), or
just associated with the geometry of the internal manifold (geometric-fluxes), such as the
tensor defining a twist in the topology in an internal torus [{]. In all known instances of
gauged extended supergravities arising from superstring/M-theory compactifications, these
background quantities enter the four-dimensional theory as components of the embedding
tensor. Interestingly enough, in these cases the quadratic constraint on the embedding
tensor follows from consistency of the higher-dimensional field equations and Bianchi iden-
tities. For instance, in type-1I compactifications in the presence of form-fluxes the quadratic
constraint expresses the tadpole cancellation condition. This condition, in the context of
compactifications which are effectively described by N = 8 four-dimensional supergravity,
poses severe restrictions on the fluxes since there is no room in this framework for localized
sources such as orientifold planes. This is the case, for example, for the type-IIB theory
compactified on a six-torus in the presence of NS-NS and R-R form-fluxes. The situation
is clearly different for compactifications yielding N < 4 theories in four dimensions.

Having identified the background quantities in a generic flux compactification with
components of the embedding tensor, our formulation of gauged maximal supergravity
may provide a useful setting for studying the duality relations between more general
superstring/M-theory vacua. Indeed the embedding tensor transforms covariantly with
respect to the full rigid symmetry group E7(7) of the four-dimensional theory, which is
expected to encode the various string dualities. For instance, the generic T-duality trans-
formations on the string moduli of the six-torus, within the same type-II theory, are im-
plemented by the SO(6,6;Z) subgroup of Ez(7)-

This paper is organized as follows. In section [] the embedding tensor is introduced
together with an extensive discussion of the constraints it should satisfy. It is demon-
strated in a special electric/magnetic frame how these constraints ensure the existence of
a Lagrangian that is invariant under the gauge group specified by the embedding tensor.
Furthermore it is explained how to incorporate both electric and magnetic charges and
corresponding gauge fields. In section P the corresponding T-tensor is introduced. As
a result of the constraints on the embedding tensor the T-tensor satisfies a number of
identities which are important for the supersymmetry of the Lagrangian. In section | the
Lagrangian and the supersymmetry transformations are derived. Salient features are the
universal expressions for the fermionic masslike terms and the scalar potential, which are
induced by the gauging, as well as the role played by the magnetic gauge fields. Some
applications, including explicit examples of new gaugings, are reviewed in section 5.



2. The embedding tensor

We start by considering (abelian) vector fields AHM transforming in the 56 representa-
tion of the E7(7) duality group with generators denoted by (ta)arY, so that 5ANM =
—A%(ty) M AMN . These vector potentials can be decomposed into 28 electric potentials
AHA and 28 magnetic potentials A,x. In the conventional supergravity Lagrangians only
28 electric vectors appear, but at this stage we base ourselves on 56 gauge fields. In due
course we will see how the correct balance of physical degrees of freedom is nevertheless
realized. The gauge group must be a subgroup of Eq(7), so that its generators Xjs, which
couple to the gauge fields AMM , are decomposed in terms of the 133 independent E77)
generators tq, i.e.,

Xar = Oy ta (2.1)

where « = 1,2,...,133 and M = 1,2,...,56. The gauging is thus encoded in a real
embedding tensor ©* belonging to the 56 x 133 representation of E7(7). The embedding
tensor acts as a projector whose rank r equals the dimension of the gauge group. One
expects that r < 28, because the ungauged Lagrangian should be based on 28 vector fields
to describe the physical degrees of freedom. As we shall see shortly, this bound is indeed
satisfied. The strategy of this paper is to treat the embedding tensor as a spurionic object
that transforms under the duality group, so that the Lagrangian and transformation rules
remain formally invariant under E;(7). The embedding tensor can then be characterized
group-theoretically. When freezing ©y* to a constant, the Epy)-invariance is broken.
An admissible embedding tensor is subject to a linear and a quadratic constraint, which
ensure that one is dealing with a proper subgroup of E(7) and that the corresponding
supergravity action remains supersymmetric. These constraints are derived in the first
subsection. A second subsection elucidates some of the results in a convenient Er(7) basis.
A third subsection deals with the introduction of tensor gauge fields and their relevance
for magnetic charges.

2.1 The constraints on the embedding tensor

The fact that the X, generate a group and thus define a Lie algebra,

(X, Xn] = fun® Xp, (2.2)

with fusrn" the as yet unknown structure constants of the gauge group, implies that the
embedding tensor must satisfy the closure condition,

Om*ON? fup? = funt ©F7. (2.3)

Here the f,37 denote the structure constants of Er(7), according to [ta,ts] = fap” ty. The
closure condition implies that the structure constants fi/n? satisfy the Jacobi identities
in the subspace projected by the embedding tensor,

fun® fro"OR* = 0. (2.4)



Using the gauge group generators Xj; one introduces gauge covariant derivatives,
M
D,=0,-gA," Xu, (2.5)

where g denotes an uniform gauge coupling constant. These derivatives lead to the covariant
field strengths,

O Fuu™ = Ou (0, AN = 0,4, — g I AN AT). (2.6)
The gauge field transformations are given by
O 5AM =0y (0,AM — g fnp™ AN AT). (2.7)

Because of the contraction with the embedding tensor, the above results apply only to an
r-dimensional subset of the gauge fields; the remaining ones do not appear in the covariant
derivatives and are not directly involved in the gauging. However, the r gauge fields that
do appear in the covariant derivatives, are only determined up to additive terms linear in
the 56 — r gauge fields that vanish upon contraction with ©,,%.

While the gauge generators (R.1)) act in principle uniformly on all fields that transform
under E7(7), the gauge field transformations are a bit more subtle to determine. This
is so because the gauge fields involved in the gauging should transform in the adjoint
representation of the gauge group. At the same time their charges should coincide with X,
in the 56 representation, so that (X,7)n? must decompose into the adjoint representation
of the gauge group plus possible extra terms which vanish upon contraction with the
embedding tensor,

(Xa)nF 0p% = 00 tsnt ©p% = —fun’ Op°. (2.8)

These extra terms, pertaining to the gauge fields that do not appear in the covariant
derivatives, will be considered in due course. Note that (R.§) is the analogue of (2.3) in
the 56 representation. The combined conditions (2.3) and (R.§) imply that © is invariant
under the gauge group and yield the Eq(7)-covariant condition

CMNaEfﬁya@Mﬁ@NV—FtﬁNP@Mﬁ@pa:0. (2.9)

Obviously Cpyn® can be assigned to irreducible E77) representations contained in the
56 x 56 x 133 representation. The condition (2.9) encompasses all previous results: it
implies that

(Xar, Xn] = —Xun® Xp, (2.10)
so that (R.9) implies a closed gauge algebra, whose structure constants, related to Xy el

in accord with (P.§), have the required antisymmetry. Hence (R.9) is indeed sufficient for
defining a proper subgroup embedding.!

'Note that for an abelian gauge group we have XunFTOp* = 0. Using () this leads to
tI‘(X]u XN) =0.



The embedding tensor satisfies a second constraint, which is required by supersymme-
try. This constraint is linear and amounts to restricting ©/ to the 912 representation [[f.
From

56 x 133 = 56 + 912 + 6480, (2.11)

one shows that this condition on the representation implies the equations,
1
tar™ ONT =0,  (tpt*)a ON° = —5 Om", (2.12)

where the index « is raised by the inverse of the Er(7)-invariant metric 1,5 = tr(tatgs).
As a result of the representation constraint, the representation content of Cpyn® can
be further restricted as from (R.12) one can derive the following equations,

1
tan” Cyp® =0, (tagt*)n" Cup® = —3 Cun®, tam’ Cpn® =ton® Cpy®. (2.13)

They imply that Cyyn® should belong to representations contained in 56 x 912. On the
other hand, the product of two G-tensors belongs to the symmetric product of two 912
representations. Comparing the decomposition of these two products,?

(912 x 912)s = 133 + 8645 + 1463 + 152152 + 253935,
56 x 912 = 133 4 8645 4+ 1539 + 40755, (2.14)

one deduces that C'yyny® belongs to the 133 4+ 8645 representation. Noting the decomposi-
tion (133 x 133), = 133 4 8645, we observe that there is an alternative way to construct
these two representations which makes use of the fact that Sp(56;R), and thus its Er ()

subgroup, has an invariant skew-symmetric matrix QM

QMN — (_01 3) . (2.15)

, which we write as,

The conjugate matrix Qs takes the same form, so that QMNQvp = —6M p. In this way

one derives an equivalent version of the constraint (2.9),
Ou O OMN = — oerle,ll =0, (2.16)

which is only equivalent provided the representation constraint (R.12) is imposed. The
constraint (R.16) implies that the ©% can all be chosen as electric vectors upon a suitable
Sp(56;R) transformation, implying that all the nonzero components of the 133 vectors ©“
cover an r-dimensional subspace parametrized by the gauge fields AHM with M =1,...,r

and r < 28. In this basis Xj/n can be written in triangular form,

_(—fu am
Xy = < 0 bM> , (2.17)

2We used the LiE package [@] for computing the decompositions of tensor products and the branching
of representations.



where the 7 x r upper-left diagonal block coincides with the gauge group structure constants
and the submatrices ap; and by; do not contribute to the product (XM)NPGPO‘. The
lower-left (56 — r) x 7 block vanishes as a result of (£.§). It is easy to see that ap; and
by cannot both be zero. If that were the case, we would have fas NP = —=XunF, which is
antisymmetric in M and N. Hence,

ON“tomt = —Ontant. (2.18)

Contracting this result by (t%)p™ leads to t, t” ©* = —©7 which is in contradiction with
the representation constraint (.13). In the next subsection we give a more detailed analysis
of the submatrices aj; and by, which shows that by; never vanishes.

Let us now proceed and find the restrictions on Xp;n*. First of all, E7(7) invariance of
QMN implies that Xynp = XMNQQPQ is symmetric in N and P. Furthermore, X belongs
to the 912 representation (remember that (t,)”" transforms as an E7(7) invariant tensor,
so that X, transforms in the same representation as the embedding tensor), which is,
however, not contained in the symmetric product (56 x 56 x 56)s. Consequently it follows
that the fully symmetric part of Xy p must vanish. Likewise, contractions of X n! will
also vanish, as they do not correspond to the 912 representation. Hence Xp/n? has the
following properties,

Xupwe =0,  Xunpy =0,  Xun" =Xun" =0. (2.19)
The first condition implies that

Xua® = -Xus, Xuas = Xusa, Xu™ =Xy, (2.20)
whereas the second one implies

X(AZF) =0, 2X(FA)2 — XzAF,

2.21
Xz =0, 2X(rp)” = X*ar. (2:21)

The constraints (R.2() and (R.21)) coincide with the constraints that we have adopted in a
more general four-dimensional context in [[[d].

The constraint (R.16) motivates the definition of another tensor Z™+ which is orthog-
onal to the embedding tensor, i.e. ZM:20,,% =0,
Zha _ %@Aa )

QMN oy — (2.22)
ZAa = _%@Aa.

ZM,a

As a consequence of the second equation of (R.19), one may derive,

Xoumny" =2 douw (2.23)
where dg, pn 18 an Eg¢py-invariant tensor symmetric in (M N),

dovn = (ta)f Qnp. (2.24)

The more general significance of (2.23) was discussed in [2(].



2.2 A special E;(7) basis

To appreciate the various implications of the constraints on X n*, we consider a special
basis in which all the charges are electric. Hence magnetic charges vanish by virtue of
©A = 0. A vector VM in the 56 representation can then be decomposed according to

VM — (VA V) — (VA V VA, V) (2.25)

with A=1,...,rand a =r+1,...,28; i.e., electric (gauge field) components are written
with upper indices A, a and their magnetic duals with corresponding lower indices A, a.
The components V@ then span the subspace defined by the condition ©,% VA = 0. Conse-
quently, V4 and V), are defined up to terms proportional to the V@ and Vj, respectively.
Obviously only the © 4 are nonvanishing and the X;n* are only nonzero when M = A.
Imposing (-23) and (P.24), it follows that a block decomposition of X 4n7 is then as follows
(row and column indices are denoted by B,b and C, ¢, respectively),

—faB® hap® Capc Cage

0 0 C 0
Xan® = o , (2.26)
0 0 fac® 0
0 0 —hac® O
where
hap)© = Ciapye = Cape) = Clano) = fap© = fas” =0. (2.27)

The last equation implies that the gauge group is unimodular. The closure relations (P-9)
imply a number of nontrivial identities,

fias” fop® =0,
fas” hepp® =0,
fas” Ceep — 4 fieia” Coipye + 4hcra® Crppye = 0,
fias” Coipa = 0. (2.28)

(]

The transformations generated by (R.24) imply that electric gauge fields transform exclu-
sively into electric gauge fields,

5A, 4 = AP fpet A,
6A," = —AP hpc A,°, (2.29)
where, for the moment, we keep the transformation parameters A space-time independent.

The magnetic gauge fields, on the other hand, transform into electric and magnetic gauge

fields,

6Aua = —AB(fBa% Apc — hpa®Auc+ Cpac A.° + Crac A,°)
6Aua = — AP Cpas A (2.30)



Because the Lagrangian does not contain the magnetic gauge fields in this case, the ques-
tion arises how the gauge transformations are realized. The answer is provided by elec-
tric/magnetic duality. The above variations (.29) and (R.30) generate a subgroup of these

duality transformations that must be contained in Er(7). General electric /magnetic trans-
formations constitute an even bigger group Sp(56;R). In the abelian case they are defined
by rotations of the 28 field strengths F, WA and the 28 conjugate tensors G, 5 defined by

. oL
GHJ/A = 1€uwpo m . (231)

The corresponding field equations and Bianchi identities constitute 56 equations,
O Fy ™ =0=0,G,pn (2.32)

which are clearly invariant under rotations of the 56 field strengths GWM , defined by

G M= (F“”A> . (2.33)

The equations (R.33) show that the G WM can be expressed in terms of 56 vector potentials,
and this is how the electric and magnetic gauge fields appear in the abelian case. Hence
we may write,

G =20,A,M. (2.34)

Electric/magnetic duality acts in principle on (abelian) field strengths rather than on cor-
responding gauge fields, because the field strengths G, A are not independent according

to (230).

Let us briefly return to the general Sp(56;R) dualities, which can be decomposed as

FA UA2 ZAZ FZ
— , (2.35)
G Wys  Va® G

where the (real) constant matrix leaves the skew-symmetric matrix Qp;y invariant. This
ensures that the new dual field strengths G, can again be written in the form (R.31) but
with a different Lagrangian. These duality transformations thus define equivalence classes

follows,

of Lagrangians that lead to the same field equations and Bianchi identities. They are
generalizations of the duality transformations known from Maxwell theory, which rotate
the electric and magnetic fields and inductions (for a review of electric/magnetic duality,
see [[d]). An E7(7) subgroup of these transformations, combined with transformations
on the scalar fields, constitutes an invariance group, meaning that the combined field
equations and Bianchi identities (including the field equations for the other fields) before
and after the E7(7) transformation follow from an identical Lagrangian. Only the vector
field strengths (2.33) and the scalar fields (to be introduced in section [J) are subject to
these E;(7) transformations. The other fields, such as the vierbein field and the spinor
fields, are inert under Ez(7).

,10,



To be more specific let us introduce the generic gauge field Lagrangian that is at most
quadratic in the field strengths, parametrized as in [L],

_ 1. - _ _
€ 1ﬁvector = _Z I{NAE F;;/A F+ﬂl/2 _NAE F;WAF ;WE}

Ayt —A )~
+ FA O + FLN O

urvA prvA

+i[(V = N) LA [0+ oL + o ozﬂ”} . (2.36)
Here the F ﬁ are complex (anti-)selfdual combinations normalized such that F),, = F, ;;t, +
F,. The field-dependent symmetric tensor Njas comprises the generalized theta angles
and coupling constants and Oiy A represents bilinears in the fermion fields. The terms
quadratic in (’)WA are such that any additional terms in the Lagrangian (which no longer
depends on the field strengths) will transform covariantly under electric/magnetic duality.
From the above Lagrangian we derive

Gl =N FL>+2108 . (2.37)

Upon an electric/magnetic duality transformation (2:3§) one finds an alternative La-
grangian of the same form but with a different expression for Mpy; and Oj,

Nas — (VN +W)ar (U + ZN) 'y,

Opn — O s [(U+ZN)" 'y, (2.38)

This result follows from requiring consistency between (P.31]) and (2.35). The restriction

to Sp(56;R) ensures that the symmetry of Ny remains preserved. For the E7(7) sub-
group of invariances, the transformations (2.3§) must be induced by corresponding Er (7
transformations of the scalar fields.

Let us now return to the infinitesimal gauge transformations corresponding to the
charges (2.20), which act on the field strengths according to 5FH,,M = A X M FH,,N.

The abelian field strengths F, WA and G, thus transform as
6F,uz/A = AP fBCA F;WC ’
6F,* = —AB hpc® Fl,°,
6G;WA = _AB(fBAC G,U,VC —hpa“ Guuc + Cpac F,ul/C + CBac F,ul/c) s
5G,ul/a = _AB CBAa F,ul/A . (239)

According to (R.37) the field strengths G,,a depend also on fields other than the vector
fields, and in order to have an invariance, the transformations of the these fields should com-
bine with the transformations of the vector fields to yield the above variations for the dual
field strengths G,,a. Therefore the gauge group must be a subgroup of Ez(7). In that case
it follows that the transformations (2.39) for FWA and G, leave the Lagrangian (2.34)
invariant, up to

0L o e"P? A | Cape Flu® Fro® +2Capa Fiu® Fpo®| . (2.40)

— 11 —



This variation constitutes a total derivative when the A4 are constant. When the parame-
ters A4 are space-time dependent, one needs to introduce extra terms into the Lagrangian.

According to (P:26) the gauge fields transform as,

5A,A = 9,A" — g fpc? A B AT,
6A," = 0N + ghpce® AP AY, (2.41)

and the covariant field strengths acquire the standard non-abelian modifications,

F,uz/A — .7:,ul/A = a,uAuA - al/A,uA - ngCA AﬂBAVC )
F;wa — fuua = 8MAua - aVAMa + g hpc* AMBAVC ) (242)

Likewise the derivatives on the scalar fields are extended to properly covariantized deriva-
tives according to (R.5). The only gauge fields that appear in the covariant derivatives
are the fields AMA, so that only these gauge fields couple to the matter fields. Note that,
according to (R.41]) and (R.43), the abelian gauge fields A, couple to charges that are
central in the gauge algebra. Therefore the resulting gauge algebra is a central extension
of (B9). Introducing formal generators X 4 and X,, it reads,

(X4, Xp] = fap® Xo — hap®Xa. (2.43)

On the matter fields the central charges X, vanish and X4 = X 4.

In (R.40) the abelian field strengths will be replaced by the covariant field strenths
([2.49), so that (P.4() is no longer a total derivative. Therefore the invariance of the action
requires the presence of extra Chern-Simons-like terms,

3
LB o getr? |Cape A, AP (0,4,6 - 39 foeCA,P AT
+ Capa A (APO,A," 4+ A,%0,A,5)

3
+ 20 Caga Ay (hop AP — fop® A AC A7) (2.44)

The identities (R.2§) ensure that these terms are indeed sufficient for restoring the gauge
invariance of the Lagrangian [21,, P]. In this connection it is important that the definition
of the dual field strengths remains as in (2.31)), so that G,,a will be defined by (.37) with
F,,* replaced by the non-abelian field strengths F,,* defined in (£-42).

Hence we have shown that any embedding tensor that satisfies the two constraints
(B.9) and (R.13), leads to a gauge invariant Lagrangian. We emphasize once more that this
was done in the special basis (2.25), in which the charges are electric. The magnetic gauge
fields do not play a role here and in the non-abelian case they can no longer be defined in

terms of a solution of (R.34).

2.3 Magnetic potentials and antisymmetric tensor fields

In the more general setting with magnetic charges, the gauge algebra does not close, simply
because the Jacobi identity is only valid on the subspace projected by the embedding tensor
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(c.f. (B4)). As was generally proven in [[Iff] for four-dimensional gauge theories, one can
still obtain a consistent gauge algebra, provided one introduces magnetic gauge fields from
the beginning, together with tensor gauge fields B,,. In the case at hand these fields
transform in the adjoint 133 representation of E7(7). At the same time, to avoid unwanted
degrees of freedom, the gauge transformations associated with the tensor fields should act
on the (electric and magnetic) gauge fields by means of a transformation that also depends
on the embedding tensor,

sAM =D A —gZ7Mez (2.45)

where the AM are the gauge transformation parameters and the covariant derivative reads,
DﬂAM = OHAM +9 Xpo™M AHPAQ. The transformations proportional to 2, , enable one to
gauge away those vector fields that are in the sector of the gauge generators X n? where
the Jacobi identity is not satisfied (this sector is perpendicular to the embedding tensor).
These gauge transformations form a group, as follows from the commutation relations,

[6(A),86(2)] = 8(2), (2.46)

where

Zspa = danp(AY DuAy — AY DyAT),
Epa = gAY (Xpo” + 2dapn ZVP)= 2.47
Spa = g ( Po” +2a0pPN )‘—‘Mﬁ . ( . )
In order to write down invariant kinetic terms for the gauge fields we have to define a
suitable covariant field strength tensor. This is an issue because the Jacobi identity is not
satisfied and because we have to deal with the new gauge transformations parametrized by

the parameters =,,,. Indeed, the usual field strength, which follows from the Ricci identity,
[D,ua Dl/] = _gfuuM X,

Ful = 0,4 = 0,A,M + g Xwp™ AN AL (2.48)

is not fully covariant.®> The lack of covariance can be readily checked by observing that
.7-"WM does not satisfy the Palatini identity,

§Fu™ = 2Dy, 0 A M — 29 X(pgy™ AT 64,9, (2.49)

under arbitrary variations 5AMM . This result shows that .7-"WM transforms under gauge
transformations as

§Fu™ = g A" XnpM Fu N — 29 Z(Dy,E 0 + dapg A" 64,)9), (2.50)

3Observe that the covariant derivative is invariant under the tensor gauge transformations, so that the
field strengths contracted with X,/ are in fact covariant.
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which is not covariant. The standard strategy [T, Rd, [[d] is therefore to define modified
field strengths,
HMVM — fMVM + gZMva B;,LVO( , (251)

where we introduce the tensor fields B, o, which are subject to suitably chosen gauge
transformation rules.

At this point we recall that the invariance transformations in the rigid case implied
that the field strengths G, transform under a subgroup of Sp(56,R) (c.f. (2:35)). Our
aim is to find a similar symplectic array of field strengths so that these transformations
are generated in the non-abelian case as well. This is not possible based on the variations
of the vector fields AMM , which will never generate the type of fermionic terms contained
in G,,n. However, the presence of the tensor fields enables one to achieve this objective,

at least to some extent. Just as in the abelian case, we define an Sp(56,R) array of field

strengths g“,,M by
H A
gWM;< “” ) , (2.52)
g,ul/E
so that

+ A _ a4+ A
G =M™

Q:[VA = Nas H:[VZ +2i (’):VA ) (2.53)

Note that the expression for G, is the analogue of ), with F, WA replaced by HWA.
Following [[Ld] we introduce the following transformation rule for Bjwa (contracted with
ZMe hecause only these combinations will appear in the Lagrangian),

ZM’Q(SBMVQ =2 ZM’Q(DULEV]Q +dg NPA[“N(SAV}P) -2 X(NP)MAPQMVN s (254)

where D,Z,q = 0,500 — gAﬂMXMaﬁEyg with Xn0° = —@M“/ffyaﬁ the gauge group gen-
erators embedded in the adjoint representation of E7(7). With this variation the modified
field strengths (B.5])) are invariant under tensor gauge transformations. Under the vector
gauge transformations we derive the following result,

5GH N = —gA"Xpnt G — g APXTRMN (G, - HE)r,

6Gtn = —g A" XpNa GLY — g Nas A"XTp™ (G, — H}i ),
(G, —Hh)a = g AT (X pa — X p¥ Nan) (G, — H,f)r - (2.55)
Hence 5QWM = —gA’XpyM QWN, just as the variation of the abelian field strengths

GWM in the absence of charges, up to terms proportional to @Aa(gﬂy — Huw)A. According
to [Ld], the latter terms represent a set of field equations. The last equation of (R.55) then
expresses the well-known fact that under a symmetry field equations transform into field
equations. As a result the gauge algebra on these tensors closes according to (2.44), up to
the the same field equation.

Having identified some of the field equations, it is easy to see how the Lagrangian should
be modified. First of all, we replace the abelian field strengths F; WA in the Lagrangian (.39)
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by HWA, so that
. a'C'v t
gMVA = IEMVPU ﬁ . (256)

Under general variations of the vector and tensor fields we then obtain the result,
1
e V0L vector = —1GTH 5 | DO AN + deAa(aBWa —2dapoA, 6A,9) | +he..  (257)

From this expression the reader can check that the Lagrangian (R.36) is indeed invariant
under the tensor gauge transformations. Even when including the gauge transformations
of the matter fields, the Lagrangian is, however, not invariant under the vector gauge
transformations. For invariance it is necessary to introduce the following universal terms
to the Lagrangian [[[q],

1., 1
['top = glg ghvre @Aa Buuoz <28pAaA + gXMNA ApMAaN + Zg eAﬁBpo 6)

1, - 1
+ 5108 Xarn o AMAN (apA(,A + 49 XPQAAPPA0Q>

1 1
+ éig e Xt AM AN <a,)Ao At 9 Xpo AAPPAJQ> . (2.58)

The first term represents a topological coupling of the antisymmetric tensor fields with the
magnetic gauge fields, and the last two terms are a generalization of the Chern-Simons-like
terms (R.44) that we encountered in the previous subsection. Under variations of the vector
and tensor fields, this Lagrangian varies into (up to total derivative terms)

1
e 10Liop = IHTA D, 5AN + 119 H ) O (6B e — 2dapo AT 0A,9) +he.. (2.59)

Under the tensor gauge transformations this variation becomes equal to the real part of
2ig HTHM @, D, =,q. This expression equals a total derivative by virtue of the invariance
of the embedding tensor, the constraint (R.14), and the Bianchi identity

1 1
D[MHVp]M = gg z M 3D[MBVP}C¥ +6do NP A[MN(&,AP}P + ggX[RS}PA,,RAP}S) . (2.60)

In this Bianchi identity, DuH,,pM = OHHW,M —|—gAuPXpNMH,,pN and D,B,,q = 0,Buva —
gApM Xua? B, This expression for the Bianchi identity is suitable for our purpose here,
but we note that it is not manifestly covariant in this form, in view of the fact that the
fully covariant derivative of HWM reads,

DpH;u/M = 8pHuuM + gApPXPNM guVN + gApPXNPM (guu - HMV)N ) (261)

and the covariant field strength of the tensor fields equals

1
Hyvpa =3 DyuBypa + 6dany Ap™ <5uAp}N + 39X (rs " A AY T + Gy - Hup1N>
(2.62)
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The manifestly covariant form of the Bianchi identity (R.6() then reads,

1
D[MHVP]M =39 zMe Huvpa - (2.63)

The various modifications described in this subsection ensure the gauge invariance of
the Lagrangian Lyect + Liop, provided we include the gauge transformations of the scalar
fields [[[f]. Furthermore, variation of the tensor fields yields the field equations identified
above,

1
5Evector + 5Etop = _Zig 6B;wa @Aa (g-l-w/ - H—H“/)A - (g_uy - H_MV)A . (264)

This result shows that the Lagrangian is invariant under variations of the tensor fields for
those components that are projected to zero by the embedding tensor component ©2%. This
implies that these components of the tensor field do not appear in the action, which plays
a crucial role in ensuring that the number of degrees of freedom will remain unchanged.

A similar phenomenon takes place for the magnetic gauge fields A,. Evaluating the
field equation for the gauge fields AMM one finds that the equation for the magnetic gauge
fields is only proportional to @AaéAuA. To see this, one evaluates

1,
5Acvector + 5£top = 51 ghvpPa DugpaMQMN(SA;LN, (265)

up to a total derivative and up to terms that vanish as a result of the field equation for
B,vo. Here one makes use of () Note that D,,QPUM = D,,QPJM , and furthermore that
DI,QPUA = D,,’HPJA, up to terms that vanish by virtue of the field equation for B,,,,. Using
the Bianchi identity (B-6J) we can thus rewrite (R.65) as follows,

1. » 1
0Lyvector + 5['top = 51 ghvre _Dugpa/\ 514;/\ + Eg Hypo'a @AQ(SAMA s (266)

under the same conditions as stated above. Note that the minimal coupling of the gauge
fields is always proportional to the embedding tensor. Therefore the full Lagrangian does
not depend on those components of the magnetic gauge fields that are projected to zero
by the embedding tensor component ©A%,

In the spririt of the analysis presented in [20], one may thus regard the absence of
the components of B, and A, as resulting from an additional gauge invariance (which
would then lead to rank-three tensors fields). However, since these fields will not appear
in the Lagrangian, there is no need for doing so. Somewhat unexpectedly, and not in line
with the general analysis of the vector-tensor hierarchies, there is an additional (local)
invariance which involves only the tensor field [,

OB 0 o AN (G — H) s — 6ADEP (G —H) s (2.67)

where AMH, = @A A 1, This new invariance has, of course, a role to play in balancing
the degrees of freedom, but in [[Lf] this aspect was bypassed in the analysis. We note that
not all of these gauge invariances have a bearing on the dynamic modes of the theory as
they also act on fields that play an auxiliary role.
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In spite of the modifications above, supersymmetry will be broken by the gauging. In
section fl we show how supersymmetry can be restored. But first we have to deal with the
effect of the gauge transformations on the scalar fields.

3. The T-tensor

We already stressed in the introduction that the scalar fields parametrize the E7)/SU(8)

coset space.4

These fields are described by a space-time dependent matrix V(r) € Er()
(taken in the fundamental 56 representation) which transforms from the right under local
SU(8) and from the left under rigid E7(7). The matrix V can be used to elevate the embed-
ding tensor to the so-called T-tensor, which is the SU(8)-covariant, field-dependent, tensor
that appears in the fermionic masslike terms and the scalar potential of the Lagrangian.

The T-tensor is thus defined by,
TveO, 9] te =V LY O (V. V) (3.1)

where the underlined indices refer to local SU(8). The appropriate representation for (B.1)
is the 56, so that we may write,

Tunt0,0] =V 1™ VAN Vp£ Xyn® . (3.2)

Because the constraints on the embedding tensor are covariant under E7(7), it is clear that
they induce a corresponding set of SU(8) covariant constraints on the T-tensor.

However, we employ a somewhat unconventional definition of the coset representative
V. Note that the T-tensor is defined in an SU(8) covariant basis, where the maximal
compact SU(8) subgroup of E;(7) takes a block-diagonal form according to the branching
under SU(8), 56 — 28 + 28. This implies the existence of a pseudo-real vector UM
decomposing according to UM = (U%¥,Uy,;), where ij and kl denote antisymmetric index
pairs with 4,7, k,1 = 1,...,8. This basis facilitates the coupling to the fermions which
transform under SU(8). On the other hand, just as in the preceding section, we decompose
the gauge fields in a real basis according to VM = (VA, V) which branches under the
maximal real SL(8) subgroup of E;(7y according to 56 — 28 + 28'. Therefore we define
56-dimensional complex vectors Vi = (VA% V*¥) and their complex conjugate Vys i =
(Vaij, Vzij), which together constitute a 56 x 56 matrix V),

- VA Vaw
V't = (VM”,VMM> = - : (3.3)
VEZ] Vzk:l

This matrix thus transforms under rigid E7(7) from the left and under local SU(8) from the
right. It does not really constitute an element of Ez(7), but it is equal to a constant matrix
(to account for the different bases adopted on both sides) times a space-time dependent

4Strictly speaking the isotropy group equals SU(8)/Zo.
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element of E77). We note the following useful properties of VarY, which also fix the
normalization,

Vu'? Vni; —Vmij VnY = iQun,
QMN YT Yy gy =16,

QMN py PRt = 0. (3.4)

The sign on the right-hand side is determined by the relative phase between V)% and
VAiJ - Because we have already fixed the definition of the E7(7) transformations on the field
strenghts (F, %,
distinguish two different cases characterized by the sign on the right-hand side of (B.4). As

Guvn), we can no longer adjust this relative phase. Therefore we must

it turns out, supersymmetry selects the sign shown above.
The equations (B.3) and (B.4) imply that the inverse coset representative V! reads,

% ij iVs ij
[V_l]MN = iQNVP ( — Vpl'j, Vpkl> = . (3.5)
iVA kil —in]kl

The most relevant restriction is, however, not captured by (@), namely that V& can be

[¢]
written as a constant tensor )% times a space-time dependent E7(7) matrix V¥ (x). The
latter 56 x 56 matrix, sometimes called the 56-bein, is usually expressed in the form,

uirg(x)  —vprs()
Vz(z) = . (3.6)
—UinL(x) uszL(l“)

The indices I, J, ... and ¢, j, . . . take the values 1, ..., 8, so that there are 28 antisymmetrized
index pairs representing the matrix indices of V; the row indices are Z = ([I.J],[K L]), and
the column indices are N = ([ij], [kl]), so as to remain consistent with the conventions
of [[l. The above matrix is pseudoreal and belongs to E7(7y € Sp(56; R) in the fundamental
representation. We use the convention where u/; = (u;/7)* and v;j; = (v¥17)*. The
indices i, j, ... refer to local SU(8) transformations and capital indices I, J,... are subject
to rigid Er(7) transformations.

(¢}
A crucial question regards the nature of the constant matrix 1. Obviously (B.4) leaves

the freedom to perform a redefinition by acting with an Sp(56; R) transformation from the
left. Because V), is defined with a lower index, such a transformation acts as follows,

VAT = VaZ Vs — Wy V2 |

VA R VI — 28 s (3.7)

These redefinitions lead to an obvious ambiguity in the definition of ]3 and correspondingly
in the definition of V% and V2. However, some of this ambiguity can be removed, either
by absorbing an E;(7) transformation emerging on the right into the definition of VBZ (z),
or by absorbing an GL(28) transformation emerging on the left into the definition of the
gauge fields. The ambiguity thus takes the form of an E(7)\Sp(56; R)/GL(28) matrix (or
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rather its inverse) [R3, [ij. The Lagrangian will implicitly depend on this matrix, as it will
be written in terms of V)% and VAW,

Let us now briefly discuss the pseudoreal representation of E7(7). The maximal compact
subgroup SU(8) coincides with the R-symmetry group of four-dimensional N = 8 super-
symmetry which is relevant for the fermions, as the chiral and antichiral gravitino and
spinor fields transform in the 8 + 8, and 56 + 56 representation of that group. Therefore
the pseudoreal basis, based on the SU(8) decomposition 56 — 28 + 28, is particularly rele-
vant. In the 56 representation, the basis vectors in the 56 representation are then denoted
by (217,251 with 2!/ = (z77)*; here the indices are antisymmetrized index pairs [I.J] and
[KL] and I,J,K,L = 1,...,8. The 2!/ transform according to the 28 representation of
SU(8). Infinitesimal Sp(56;R) transformations now take the form,

6zry = ArS Y 2k + Sy 25
(SZIJ _ AIJKL ZKL + EIJKL 2K, (38)
where A7 /5 and ¥k 1 are subject to the conditions

(A[JKL)* — AIJKL _ _AKLIJ, (EIJKL)* — EKLIJ ) (39)

The matrices A;;%" are associated with the maximal compact U(28) subgroup. In this
basis the invariant skew-symmetric tensor € is proportional to (R.15). The E7(7) subgroup

of Sp(56;R) is obtained for fully antisymmetric ¥//5% with the additional restrictions,
AP =0 WA, A=A
1
A =0, YKL = SACIJKLMNPQ YMNPQ (3.10)

The A’ generate the group SU(8). Closure of the full algebra is ensured by the fact that

two tensors Y1 and Yo satisfy the relation

Y11 DMVEL 5 ey B VKL
2
=3 5 <El anp S2NE 5 v E1L}MNP> : (3.11)

which follows from the selfduality of . All this is in accord with the branching of the
adjoint representation of E(7) with respect to its SU(8) subgroup: 133 — 63 + 70.
Before returning to the 7T-tensor, let us first reconsider the representation of the scalar
fields based on V¥ and VM. Under arbitrary variations of the E7(7) matrix (B.6) we note
the result,
VLY oVNE = VT HuZ 6VE, (3.12)

o)
which follows from the fact that the constant matrix ) cancels in the expression on the
left-hand side. This observation leads to

kl oMN : 1J kl kllJ
Vmij VN Q :—1<uij ou™ 1y — vijrg 0v >,

VMij 5VNkl QMN = —i <Uij]J 5ukll‘] — uijU 5Ukl[J> . (3.13)
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The expression on the right-hand side shows that the equation (B.19) can be decomposed
into the generators of E(7). The first term should be proportional to the SU(8) generators
in the 28 representation, and the second term should belong to the 70 representation.
Using these restrictions, we derive,

3
Varij OV QMY = S5t Vg VI QMY

Varig VN QN = Vg Vg @YY
Vi vy QMN = —if;fﬂ’klmnm Vitmn 6Vnpg QMY (3.14)
In what follows these equations play an important role.

Let us now return to the T-tensor. First we draw attention to the fact that, when
treating the embedding tensor as a spurionic object that transforms under the duality
group, the equations of motion, the Bianchi identities and the transformation rules remain
formally invariant under E7(7). Under the latter ©p;% would transform as ©;*t, —
g ONY (gtag™), with g € E7(7). The same observation applies to the 7T-tensor. To
make this more explicit we note that every variation of the coset representative can be
expressed as a (possibly field-dependent) E7(;) transformation acting on V' from the right.
For example, a rigid E;(7) transformation acting from the left can be rewritten as a field-
dependent transformation from the right,

VoV =gV=Vo!, (3.15)

with 0~ =V~ lgV € E7(7), but also a supersymmetry transformation can be written in
this form. Consequently, these variations of V induce the following transformation of the
T-tensor,

Tun® — Tynt = ou@on® (e st Tor® . (3.16)
This implies that the T-tensor constitutes a representation of E7 (7). Observe that this is not
an invariance statement; rather it means that the T-tensor (irrespective of the choice for the
corresponding embedding tensor) varies under supersymmetry or any other transformation
in a way that can be written as a (possibly field-dependent) E7(7)-transformation. Note also
that the transformation assignment of the embedding tensor and the T-tensor are opposite
in view of the relationship between g and o, something that is important in practical
applications.

Subsequently we determine the T-tensor according to (B.2). First we define

NP VN Xup? VoM = —i1Qui
QNP VN Xup® Vo = — iPrijkl - (3.17)
We note that Qps and Pjs are subject to constraints,
zZMe Qi =0, ZM P =0, (3.18)

by virtue of the quadratic constraint (2.16). The tensor ZM:® was defined in (R.29). For
the convenience of the reader, we also note the relation,

Xunt Vi = Py Vv 4 Q™ V. (3.19)
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The generators X define a subgroup of E7(7y in a certain electric/magnetic duality basis,
which in (B.17) is converted to the pseudoreal representation. Compatibility with the Lie
algebra of E7(;) implies that Pk is a selfdual SU(8) tensor,

1

PMijkl — ﬂ 6ijk:lmnpq Panpq, (320)

and that Qj, transforms as a connection associated with SU(8). Hence, Qp, ijkl satisfies
the decomposition,

Qi =% Qur il (3.21)
with QMij = _Qsz‘ and Qjr;" = 0. Decomposing
Tyun® = (Tz’jﬂpa Tklﬂp> ; (3.22)
we write the components of the T-tensor in matrix notation,
- %6[19[]) Tq]l}ij ﬁgklrstuvw Ttuvw@,j
T, - , (3.23)
Tmnpqij % ) r [m Tn] slij

where (1), [m"}) are the row indices and (IP9), irs]) the column indices, and

’ S0plP Ty Thirs"?
. | (3.24)
igmnpqtuvw Truvw ij %5[7’ [m Ts} nlij

Multiplicative factors have been included to make contact with the definitions of [I, B3, .
In order to belong to the Lie algebra of Ey(7), the matrix blocks in the above expressions
satisfy T,*7 = 0 and Tklm"ij = T[klm"}lj. Note that we always use the convention where
complex conjugation is effected by raising and lowering of indices SU(8).

Comparing the above expressions, one can directly establish the following expressions,”

3 ~
T\ = ZiQMN Ok VN,

o -
Thtmn" = 5l QMY Posktin VN (3.25)

Note that so far no constraints have been imposed on the T-tensor.

We already noted that every variation of the coset representative can be cast in the
form of an E7(7) transformation acting on the right of V. This implies that any variation
of the T-tensor is again proportional to the T-tensor itself (c.f. (B.16)). In view of the
covariance under the SU(8) subgroup, the only relevant variation is therefore

V—>V<; §> . (3.26)

5Unlike in the original definition (@) the Vs are only proportional to an E7(7y group element, so that
the proportionality factor in () is not intrinsically defined. Our choice for this factor is such that our
results remain as closely related as possible to the original expressions of [EI]
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In this way one can derive,

) ) 1 . .
5ﬂjkl — yjmnp Emnpkl _ _Ejmnpqrst Eimnp Tqrstkl + Eklmn Tjimn

24
; 1 . .
— 9 yymnp Emnpkl - Z 5i] mnpg Tmnqul + Eklmn Tjimn ,
4 1
6Tijklmn - _ gzp[ijk Tl]pmn _ ﬁeijklpqrs Emntu qurstu ) (3‘27)

This formula can be used for evaluating, for instance, space-time derivatives or supersym-
metry variations of the T-tensor, where one must choose the appropriate expressions for
Y, Y o VLY.

Armed with these results we can now proceed and derive the constraints on the T-
tensor induced by the embedding tensor constraints discussed in the previous section. First
of all, as a consequence of (R.12), the T-tensor is constrained to the 912 representation of
E7(7), which decomposes into a 36 and a 420 representation of SU(8). This shows that
there must be a proportionality relation between Tklm"ij and 5[Z~[k Tﬂlm"], as both sides
can only contain the 420 representation. Checking the consistency of this with (B:27), it
follows that

4
Tklmnij _ _35[2[16 Tﬂlmn} ,
Tk — - Aokl §Ala[k s, (3.28)

where Ay 7k = Ay ikl A0k — () and A[lij] = 0, so that T}k = 0. Clearly A; and
Ay represent the 36 and 420 representations of SU(8), respectively. These results are
not new and were first given in [fl], but we prefer to give a self-contained derivation here
to demonstrate how to cast the group-theoretical restrictions into the equations that one
needs for the Lagrangian. The SU(8) tensors A; and Ay appear in the Lagrangian in the
masslike terms and in the scalar potential that we will present in the next section. In fact,
the supersymmetry of the action to first order of the gauge coupling constant g, depends
crucially on (B.2§). Note that none of these results depend on the actual gauge group.
The only requirement is that the embedding tensor satisfies the constraints discussed in
the previous section.

We now turn to a discussion of the constraints that are quadratic in the T-tensor. These
constraints are sufficient for proving the supersymmetry of the action to second order in g.
In section 2 we presented two alternative expressions for the quadratic constraint. One is
(2.16), which can be rewritten as an equation for the T-tensor after suitable multiplication
with V. The results, which coincide with the ones derived in [fl, fi], take the form,

T T™ = TP T = 0,
1 y
k k t
T lij Tmnpqzj + 245mnpqrstu Tl e uij = 05

. 1 .
vw rst ¥l vw rrstu _
Tl’rst 17 vw §6Z Trstu T rw Oa

9 1
Tijkrvw Tmnprvw _ 15[[7@71 Tjk]rsvw Tnp}rsvw + 1_6572ngzg Trstuvw Trstuvw =0, (329)
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where in the last identity the antisymmetrization does not include the indices v, w. Sub-
stituting the results of (B.2§), these equations reduce to,

AgPij Ao ™ — AgF Ay — 445k AT 4450, Ay
— 20" Ay AR 208 A A =0,
AQijk[m Aanp(I] + Aljk6fmA2knpq} - Alj[mAQinpq]

1 ) ; .
+ ﬁgmnpqrstu (AQjZkr AZkStu + Ajlk(S;AQkStu - AlerQjStu) = 0,

9 Ay ikt Ag?™ — Agd i Ag™™ — 57 Ao jm A2™™ =0,
Ag" i Ay ™™ — 9 Agl™ (i Aoy ™" — 9 8;I™ Ag™, g5 AgyPIT

—907;,; ™ Ag¥ g, g Ap IS 4 8TIR Aty A" = 0,(3.30)
where the antisymmetrizations in the last equation apply to the index triples [ijk] and
[mnp]. Note that the representation content of these four constraint equations is 945 +

945 4+ 63, 3584 + 378 + 378 + 70, 63 and 2352, respectively.
As we intend to demonstrate in the following, consistent gaugings are characterized
by embedding tensors that satisfy two constraints (2.13) and (R.1€), one linear and one
quadratic in this tensor. These two constraints lead to corresponding constraints on the

T-tensor, namely (B.28) and (8.30).

4. The Lagrangian and transformation rules

In principle the Lagrangian and transformation rules are known from [[], but we have
to convert to the unconventional definition of the coset representative. Furthermore we
have to make contact with the formalism of [l to incorporate possible magnetic charges.
The reader who wishes to avoid the complications associated with the magnetic charges,
can simply assume that an appropriate electric/magnetic duality transformation has been
performed so that there are only electric charges (implying that Ol = 0). But as we have
indicated previously, there is a variety of reasons why it is advantageous to remain in a

more general electric/magnetic duality frame.

4.1 Coset geometry

The first issue that we have to address is related to the coset representative of E;(7)/SU(8).
In particular we have to write the composite SU(8) gauge fields Q, and the tensor P,
appearing in the kinetic term for the scalar fields in terms of the Vj;%. This proceeds in
the standard way. We assume the presence of 56 gauge fields AMM which couple to the
charges X as in (R.§). The covariant derivative,

DuVn = 0, V" — Qi Vi — g A" Xpa™ VN, (4.1)
is covariant with respect to SU(8), with corresponding connection

Quif = 5, Quyf, (4.2)
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with Quij = —Quji and Qmi = 0. Furthermore it is covariant under the optional gauge
transformations with generators Xj; and connections A,*. The SU(8) connection is,
however, not an independent field and determined by the condition,

QMY Vi DYN =0, (4.3)

which yields
.2 , . .
Qui’ = Zi(Vain OV = Vi 0,00%) — g AN Quri? (4.4)
where Q)7 is defined by (B.17).

In addition we define an SU(8) tensor P, ;jx; which is invariant under the optional
gauge group Gy,

Pijet = 1M VDV = i(Vai DV — VY DuVar) (4.5)

where the gauge fields contribute through the covariant derivative, leading to
—g AﬂM Phrijki- Compatibility with the Lie algebra of E7(7) implies that P, 5 is a selfdual
SU(8) tensor,

Puwkl = cigklmnpg P mnpa - (4.6)

Furthermore we note the useful identity,
DMVMU = 'Puijkl Vi - (4.7)

Applying a second derivative to (3) (f.7) leads to integrability conditions known as
the Cartan-Maurer equations,

. 4 ,
FﬂV(Q)i] = _g 7D[,u]kl Pu}iklm - g]:/.U/M i’

g 1 g
D[;LPV}ZJM = _59 fuuM PMZJM > (48)

where Qpr;/ and PyY* are defined by (B:17),
F(Q),ul/ij — a,qu/ij - auQm'j + Q[ﬂzk Qu]kj ; (49)

is the SU(8) field strength, and 7, was already defined in (2:48). These Cartan-Maurer
equations are important for deriving the supersymmetry of the action. The order-g terms
violate the supersymmetry of the original ungauged Lagrangian as they induce new su-
persymmetry variations of the gravitino kinetic terms and the Noether term, which are
proportional to the field strengths .7-"WM and also to the T-tensor.

4.2 The ungauged Lagrangian

In this subsection we briefly introduce the ungauged Lagrangian of N = 8 supergrav-
ity in the notation of this paper. Up to terms proportional to the field equations of the
gauge fields, this Lagrangian is invariant under an E7) subgroup of the Sp(56,R) elec-
tric/magnetic duality group. The most crucial part of the Lagrangian concerns the 28
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electric vector fields AﬂA (their magnetic duals A, are absent as we already discussed in
subsection R.9), which are only invariant under a subgroup of E7(7). The field equations for
these vector fields and the Bianchi identities for their field strengths constitute 56 equa-
tions, given in (R.32), which are subject to electric/magnetic duality transformations. Only
the vector field strengths FWM and the scalar fields contained in Vj;% are subject to the
E7(7) transformations.

The generic gauge field Lagrangian, parametrized as in [[L], was given in (R.3§) and
contains moment couplings of the field strength FWA with an operator O, which is
quadratic in the fermions. Here we will discuss the explict form of O, ,a and of Nas. We
start from the 56 field strengths GWM , introduced in susbsection P.3, which transform
under the Er(7) transformations, which are embedded in the Sp(56,R) electric/magnetic
duality group. From these field strengths and Vj/¥ and its complex conjugate, we can
construct Ez(7) invariant tensors. Specifically, consider the 56 Eg(7) invariant tensors,
Vi G:[,,M and Vyy Z-jG;fl,M , and their anti-selfdual counterparts that follow by hermitean
conjugation. The fermionic bilinears O,,,a are proportional to the following SU(8) covariant

expression [24, B3, [[§],

I T 1 3 1 g B
(9;‘”1] = 5\/§¢27[p%u70]% - §7ppk7,uu7pxwk - —\/iewklmnquklm'ﬁanpq, (4-10)
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which is selfdual and transforming in the 28 representation of SU(8). Its complex conjugate
is anti-selfdual and transforms in the 28 representation. The fact that only a single tensor
of fermionic bilinears appears in the relation between the field strengths FWA and the
dual field strengths G, A, implies that this relation must coincide with the following Er(7)

invariant equation,®

. 1 .
Vi GEM = —5(9;/] : (4.11)

The independent combination, Vs Z-jGI,,M , defines an SU(8) covariant tensor,

F+

_ M
g = Vi G (4.12)

which will appear in the supersymmetry transformations of the fermions. In this way both
the Er(7) invariance and the SU(8) covariance of the supersymmetry transformations will
be ensured. Using (B.4), we derive the following equation,

1 ~

Furthermore, comparison of (fl.11)) to (R.37) leads to a determination of My and (’);LV A

VEI Ny = =W\ |
1

VMIOF | = " o5, (4.14)

SWe follow the argumentation presented in @] The proportionality factor on the right-hand side of the
equation follows from supersymmetry.
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These equations hold in any electric/magnetic duality frame and the reader may verify
that (R.39) is indeed consistent with (B.7). Furthermore we note the relation,

(N = N) AR = A Y2, (4.15)

Observe that the imaginary part of the matrix N7, is negative so that the kinetic term
in (R.34) carries the correct sign. The sign in ([.1) depends crucially on the sign adopted
in (B.4). We also note the following relation

FhAOM = lpr ot o0t

1 g WA O;ﬂy VA@']' VE (4.16)

Most of the transformation rules and the Lagrangian can be deduced from [f[]. As the
reader may verify, they are consistent with Er(7) and SU(8) covariance. The transformation

rules can be written as follows,

4 ol e 1 -
0’ = 2Dy + V2 EL T 4P e + X Xk Y€

4
1 - 1
+§\/§wuk7axw Ya€j — 576 5Z]klmnquklm'7 Xnpg YuVab€;j »
y . 3 . . 1
5Xz]k — _2\/5 p;]kl ’Y'uel + 5 ij[zj,yﬂuek} 24\/56@]klmnpqxlmnqur &
Sep® = @ + @7’

» o 1 ..
V' = 2V2Vam (e“xj’f” + ek €mxnpq) :

5AMM = —iQMNVNij <€k Yu Xijk + 2\/5 €; Ibw‘) + h.c.. (4-17)

Here and henceforth the caret indicates that the corresponding quantity is covariantized
with respect to supersymmetry. For completeness we record the expressions for ﬁﬂij kland

Jr
FWZ] below,

R .. . 1
zpuzgkl _ zpuukl . \/5 <¢Lz X]k” + ﬂ

&,ijklmnpq qzjum anq) ’
F,I/@] = F/J,yzj + - ¢p 7 Yuv Xijk — \/iipi{’ﬁty,’}/pa}lﬁgj . (4.18)

The supercovariantized field strenghts C?WM then follow from ([.13) by substituting the
second expression on the right-hand side,

) _ 1 . _
G:VM = 1QMN |:V Z]F;’Z] 88\/§VNij€Z]klmnpq Xklm'Yqunpq:| . (4'19)

The derivatives D), are covariant with respect to Lorentz transformations and SU(8).

For instance, we note,

4 1 1
D€' = Ou€' — Zwuab’yabel + §Quzjej . (4.20)
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The spin connection field wuab is consistent with the expression one would obtain in first-
order formalism, and corresponds to the following value for the torsion tensor,

. 1 »
Dueua - Dueua = w[ul'ya(bu]i + E 5;wab XUk'Yinjk . (4'21)

Note that we wrote down transformation rules for both electric and magnetic gauge fields
AHM . However, the (ungauged) Lagrangian that we are about to introduce below does not
depend on the magnetic gauge fields A,x. In view of what will happen when a gauging is
introduced, we will resolve this by assuming that the Lagrangian is simply invariant under
an additional local gauge symmetry which acts exclusively on the magnetic gauge fields
according to 04, = Z,,, where the =,y are independent space-time dependent functions.
At this stage this may sound somewhat trivial, but the relevance of this approach will
become clear shortly when switching on general gaugings.

The above transformations ([E17) close under commutation. In particular the com-
mutator of two consecutive supersymmetry transformations d(e;) and d(ez) leads to the

following bosonic symmetry variations,
6(e2), 8(e2)] = €9 Dy + 81,(e) + bansy(€5) + S5y (') + Fgange(AM) + b (3) . (4.22)
The first term indicates a general coordinate transformation, with parameter & given by
¢ = 2(&'y"er; + Eiter’), (4.23)

whose covariantized form is generated on the matter fields by a supercovariant derivative.
The supersymmetry transformation parameter €3 is equal to

s = V(@) v (124
The gauge transformation on the abelian gauge fields is expressed in terms of the parameter,
AM = —41\/5 QMN (VNU €2;€15 — VNij EQZ'Elj) R (425)

which contributes to both electric and magnetic gauge fields. For these fields the general
coordinate transformation appears in the form —¢&” GWM . For the electric gauge field the
G WA represents the standard field strength and this term can be written as the linear com-
bination of a general coordinate transformation accompanied by a field-dependent gauge
transformation. For the magnetic gauge fields one can take the same point of view, assum-
ing that G, is actually the curl of A,,, which is a priori possible because the equations
of motion (c.f. (R.3%)) imply that G,,a is subject to a Bianchi identity. However, one
does not have to take this point of view, as the shift transformation in ({.29), which acts
exclusively on the magnetic gauge fields, can always accomodate any terms that arise in
the supersymmetry commutator on AﬂA.

We refrain from quoting any results for the parameters of the Lorentz and the SU(8)
transformations, as they will not play an important role in what follows. In subsection [£.4]
we return to the same supersymmetry commutator in the presence of electric and magnetic
charges and work out some of the results in more detail.
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The full Lagrangian for the ungauged theory can be written as follows,
1 1 uvpo (70 T iy
L= —§€R 3¢ (Vu' 1 Dptboi — V" D pyvito i)
1 _
— Z ie{NAE Flj;A s NAE FM_VA F—;UJE}
=L D sk — TD i) — —e [P 2
12 X7 Y PuXijk — X wY Xijk 126 °w
1 g o
- E\@e {Xijk’)’”’)’“iﬁul (PIM + PIM) + h-C-}
+ eF MO + eF M OFH — eVt P [O:VAO;“’ + 0,205
+ Ly, (4.26)
where £4 contains the following SU(8) invariant terms quartic in the fermion fields,
L L7 Ty 3
4 = —56% % ¢ 21/} J

1. R y
+3e€ [¢pk7w7p><ijk (V29,7 + 51#“1%)(”[) - h.c.]

1 . — 1 _
+ —=5€ |:5ijklmnpq>_(2jk7uyxlmn (¢up¢uq + 6\/§¢ur7uqur) + h.C.:|

288
1 ikl - jmn 1 e ILIWT 2
558XV XGk Ximn Yu X %(x Y Xijk)” (4.27)

The terms of higher order in the fermions were taken from [f[], where their correctness
was established in the presence of the SO(8) gauging. However, in the corresponding
calculations only the generic properties of the T-tensor were used, which do not depend on
the choice of the gauge group. Hence these four-fermion terms must be universal. Observe
that the above Lagrangian applies to any electric/magnetic duality frame because we can

simply redefine the fields Vy;% by an Sp(56, R) matrix.

4.3 Introducing electric and magnetic charges

Charges X s that couple to the gauge fields AMM are introduced in the standard way by
extending covariant derivatives according to (2.). In principle we include both electric and
magnetic charges and therefore we need both electric gauge fields AMA and magnetic gauge
fields A,a. The fact that the latter did not appear so far in the Lagrangian ([£.26) will not
immediately pose a problem, but a gauging usually induces a breaking of supersymmetry.
Most of the covariant derivatives do not lead to new terms when establishing supersym-
mmetry, but there are variations involving the commutator of the covariant derivatives
that, in the presence of the gauging, lead to the (nonabelian) field strengths .7-"“,,M defined
in (2.4§). These terms, which are proportional to the gauge coupling constant g, are easy
to identify, as they originate exclusively from the fermion kinetic terms. They are induced
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the Cartan-Maurer equations (f.§) whose right-hand sides exhibit the extra terms propor-
tional to the gauge coupling constant g. Collecting these terms leads to the following new
variations,

1. :
oL = —egHWM ZQMZJ(EWPVW%]' — &7 YPY,")

1

* 144

V2 Porijhr €75 g €g | + hic.,  (4.28)
where Q7 and Prrijri were defined in (B.17) and the replacement of .7-"WM by HWM is
based on (B.1§).

It is, in principle, well known how these variations can be cancelled [[I. Namely,
one introduces masslike terms and new supersymmetry variations for the fermions. These
modifications generate (among other terms) precisely the type of variations that may can-
cel (28). The masslike terms are written as follows,

1 SV R g B
Lmasslike = €g {5\/5141 ij TZJMZ’Y“ %j + EAZi]kl wuZ’YMXjkl + Agjk,lmn Xijk len}
+ h.c., (4.29)

where

. 1 -
Agidkimn _ m\/ﬁgwkpqr[lm AZn}qu‘ ’ (4.30)

and the new fermion variations are equal to

5gwui = \/igAlij Y €55
SR = —2g Ay ik €l (4.31)

Here A; and As are the components of the T-tensor defined in (B.2§).

Furthermore we replace the abelian field strengths in the Lagrangian ([£.26) by the field
strengths HWA, as described in subsection P.J, and we include the topological and Chern-
Simons-like terms (.58). In the supersymmetry variations of the fermions we replace F,,;;
accordingly by a tensor H,,;; defined in analogy with (E19),

Ml =VYui G (4.32)

Likewise we note three more relations,

g 1
v G = =S O, (4.33)
' g 1 g
Q;LLVM = iQMN VNZ]H:V ij + §VN ij(’);;/l] , (4.34)
+ A Htur + +uv + +ur A >
H, OAM = —ZH“”J- O 4 2O;WA OEM V& v (4.35)

in direct analogy with ({.11)), (4.13) and (i.1€]), respectively.

These above modifications generate a number of terms similar to (4.2§) originating
from the fermion variations proportional to H,.;; in (f.29) and from the fermion varia-
tions (.31) in the terms H,,*O* 5 in the original Lagrangian (.26) (upon the replacement
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of the abelian field strengths by the HWA). Dropping terms of higher order in the fermions,
these variations take the following form (here we also make use of (B.2§)),

0L =egH,, 3T]kl(_27p7w¢m — 7"y’

1
+ Ex/iTmnqul gmnpqrstu YrstY' €u| + huc. . (4.36)

Using the definition of the T-tensor (B.25) one can show that ([.36) and (f.2§) combine to

the expression,

0L = —eg [HIVM - QIVM} (4.37)
l J(HAPAIY oy = VAP T l\/ﬁ ijmn - ‘ h
X 4QMZ (EV Y ps — €YY P,") + 6 P €Y Xjmn | +h.c.,

up to higher-order fermion terms. Here we made use of ([.34). For the electric components,
where M is replaced by A, this term vanishes as one can read off from (R.5J). The magnetic
components can be cancelled by assigning a suitable supersymmetry variation to the tensor
fields. Making use of (.64) one can determine this variation directly,

2 . A
@Aa 5B,ul/a = i<§\/§PAijkl E[Z Yuv X]k” +4QA]ZE27 T;Z)V — h.c >
—2 X NP Qpg AN 64,9 . (4.38)

At this point we have obtained a fairly complete version of all the supersymmetry
transformations. In principle one can now continue and verify the cancellation of other
variations of the Lagrangian. The pattern of cancellations is very similar to the pattern
exhibited in [[l]. In the following subsection we first summarize the full supersymmetry
transformations and give the complete action. When comparing the results to those for
the electric gaugings, the transformation rules for the magnetic gauge fields and the ten-
sor fields do not enter. To verify the completeness of these transformation rules we will
therefore verify the closure of the supersymmetry commutator for all the bosonic fields.
This commutator will differ from ({.23), as there will be extra terms related to the gauge
transformations and furthermore the shift transformation dg;¢ is replaced by the tensor

gauge transformations.

4.4 Gauged maximal supergravity

In this section we present the complete results for gauged supergravity. The supersymmetry
transformation rules turn out to take the following form,

St = 2D,€ + = \f 2, 4P e + Xlkl’}/ankl VaVu€

1
+= \/_¢ukr7a ik Ya€j — 57652Jklmnquklm’7 Xnpq YuYab€j
+\/_9A1 Yu €5
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g » 3o 1 y )
5X1]k _ _2\/§szkl ’Y“Gl + 5 HMV[ZJ,YM Ek} . ﬂ\/5EUklmn;oqlenqur e
_29 AQlijk el )
de,t = EiVGZZ)m + Eﬁaﬂ)pi ;

» o 1 ..
V7 = 2V2Vym (6[’Xjk” + ﬂﬁwklm"pq 6mevq> )

(5AMM = —iQMNVNij <€k Yu Xijk + 2\/5@ Ibuj) + h.c.,

2 4 . : .
5B,u1/a = g\/itaMPQMQ (VP ijVQ kl E[Z Yuv Xjk” + 2\/5 VijVQlk € aim T;Z)V}J + hC>
— 2o n Qpn AN 04N (4.39)

As was already noted before (see the text preceding (R.54))), we only need the variations
©r* 0Byva, which can conveniently be written as,

(2 i ) i .
@Ma 5B;u/o¢ = 1(5\/§PM2]M 6[ Yuv X]kl] +4 QM] € f)/[p 1/}1/]] - hC>
—2Xun"Qpg AN 04,9 . (4.40)

The above variations were determined by the substitution of H:m- ; for F/ ;/z ; into (E17) and
by including the variations ({.31). For the tensor field Bjva we based ourselves on ({.39).

At this point we return to the commutator of two supersymmetry transformations,
which still takes the form (4.22), but now with the last ‘shift’ transformation on the mag-

netic gauge fields replaced by a full tensor gauge transformation,
[5(61)7 5(62)] = é‘ﬂﬁu + 5L(€ab) + 5susy(€3) + 5SU(8) (Aij) + 5gaUge (AM) + 5ten50r(Eua) . (4-41)

As before, the first term represents a covariantized general coordinate transformation,
where one must now also include terms of order g induced by the gauging. The parameters
e3 and AM of the supersymmetry and gauge transformations appearing on the right-hand
side, were already given in ([.24]) and ([.2]), respectively.

Because the magnetic vector and the tensor gauge fields are new as compared to
previous treatments, we briefly consider the realization of (f.47]) on the vector and tensor
gauge fields. As a non-trivial consistency check on our reuslt, we include all higher-order
fermion contributions in the supersymmetry commutator acting on the vector fields. For
the tensor gauge field we include all bilinears in the fields x“%. In this way we also determine
the parameter of the tensor gauge transformation in ([.41)). On the vector gauge fields we
derive,

. 1 - 1 _ .
[6(e1), 8(e2)] A = =€ |G ™ - 5l QMNYN D,y v + 5! OMNVr by x*
+ D AM — gZMe =, 4 (es), (4.42)

where
Ou” Eﬂa = —41 Qi (EQZ’)/“EU + EQj’)/HElZ) R (443)
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defines a contribution to the parameters of the tensor gauge transformations. These are not
the only terms, as we will see by evaluating the first term on the right-hand side of ({.49).
We remind the reader that we are only interested in the algebra acting on the fields AHA
and @AO‘AMA, as was explained at the end of subsection P.J. This enables us to replace
@AO‘,C’;WA by @AO‘?:(WA, by making use of the field equations (R.64) of the tensor field.
This result applies also to the supercovariant extensions of the field strengths (this can be
deduced from the observation that field equations transform into field equations under a
symmetry of the action). Hence we must evaluate the expression,

— & MM = 0,AM + 0,67 AM — D" AM)
—igv QMN |:VNij [ Xije + V20uith;] — h-C-}
—gZM* ¢ [Bua — tan® Qpo AN AT (4.44)
Combining this expression with the fermionic bilinears in ({.42) shows that the re-
sult decomposes into a space-time diffeomorphism with parameter £*, a nonabelian

gauge transformation with parameter —f“AHM , a supersymmetry transformation with
parameter —%5”1/),4, and a tensor gauge transformation with parameter &(Bua —
taNQ QPQ A“NA,,P).

Subsequently we evaluate the supersymmetry commutator on the tensor fields
O Buye- Including all terms quadratic in X% we derive the following result,

[6(€1),0(€2)] O Buva = 200" DuZyja + 2 Xun" GV Qpg A9
2 . .
+3iv2 <7)Mz'jkl el XM — h-C-)
) .1 L 1 o
+ie o € |:§PM ik PPIRL 4 3 A’ XWV’)XW}

—2XunTQpg ALY [8(er),0(e2)]A 9 + -, (4.45)

where ¢*, AM | e3 and Z,, have already been given in (£.23), ({.25), ([(.24) and ({.49),

respectively, and the dots represent additional terms linear and quadratic in %ﬁ. To derive

this expression we used many of the results obtained previously. We draw attention to the
fact that we also need the torsion constraint (.21). Obviously the commutator closes with
respect to these parameters in view of the fact that closure was already established on the
gauge fields AMM . Note also the second term proportional to A9, which is implied by the
last term shown in (R.54).

What remains is to investigate the closure relation for the terms proportional to the
parameter & of the general coordinate transformations. For these terms it is important
to restrict ourselves to the commutator on @Aana, as these are the only components of
the tensor field on which the supersymmetry algebra should be realized (we refer to the
discussion at the end of subsection R.3). We will first show that closure is indeed achieved
provided the following equation holds,

L 1 o 1 .
Elg EuupoHme @Aa +eg <§PAijkl puwkl + §QA1‘] XZkl’y“Xjkl> +... = 0. (4.46)
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Here the unspecified terms are proportional to gravitino fields, which are suppressed
throughout this calculation. This equation is simply the field equation associated with
the magnetic vector fields (up to terms that vanish upon using the field equation for the
tensor fields). The first term was aready evaluated in (2.66) and the second term originates
from the minimal coulings which enter through P;“*" and Quij . It is perhaps unexpected
that the supersymmetry algebra closes modulo a bosonic field equation that involves space-
time derivatives, but one has to bear in mind that these particular field equations are only
of first order in derivatives. Using the above equation we derive,

_ 1 L 1 o
1€ Epvpo 50 gpAijkl ,Ppwkl + §QAi] XZkl’YpXjkl = (_)Aa [SpapBuua —2 8[,u§p Bu]pa]

+20%Dy, [€°(B,jpn — tan® Qpg AN 4,0)] — 2 X N G N QpgerA,°
+2 XA NP Qpg ALY [€90,A0% + 0,087 4,9 —2£6°(G —H), %] (4.47)

This establishes that full closure is indeed realized. The first line represents the required
general coordinate transformation, the second and third term corresponds to the extra
vector and tensor gauge transformations, respectively, with the same parameters as found
in (f.44). Finally, the last term cancels against the similar terms generated on A, 9 by the
commutator in the last term of (f.4§). Here it is important to realize that this commutator
does not fully close, in view of the fact that AHQ includes all the magnetic gauge fields, as
there is no contraction with ©¢g®. Nevertheless one is still left with a term proportional to
(G — M),,9, which can be absorbed into a transformation of type (2.67).

The full universal Lagrangian of maximal gauged supergravity in four space-time di-
mensions reads as follows,

1 1 ny Ny
—56 R - §€MW)U (¢ﬂ27pr¢oi - T;Z),ulﬁp’%ﬂboi)

L =
1 _
-3 ie{NAg HEAHTE — Mas M, H"‘”E}
—ijk

1 e 1
= 15¢ XY Dyxign — X% D " Xijn) — T3¢ P

1 o, g .
- E\/ie {Xz‘jw Vi1 (P + PR + h-C-}
+eH N O + eM, 0 O — eVt VP [O:VA(’);“” + O;VA(’);‘”}
Ligemeo gha g 20,A X AMAN Lo 6p
+§lg€ u o b Ac A+ JAMNA Ap o _Zg A" Dpo
1. . 1
+ glg eMPT X v A A,uMAl/N <apAoA + ZgXPQAApPAJQ>
L pvpo A M A N 1 P4 Q
+ 6195 XMN Au Al/ 8pAO'A + ZgXPQAAp AO’
1 _ 1 g
+9g 6{ 5\/5141 ig U LA 4 = Ap A A X+ AP S X + h-C-}

6
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1 . 3
—g’e {ﬂAmjklA;jkl - ZA§]A1 ij}
VL, (4.48)

where £, was given in (.27). Here we included the scalar potential which appears at order
g* and which takes the form already derived in [fl. We note that this potential can be

written in various ways,

1 3,
P) = | 5lxP - a7

1 5 , .
= 336 9> MMN {SPM”klPNijkl +99um’ QNjZ}
1

= 572 gQ{XMNRXpQSMMPMNQMRS + 7XMNQXPQNMMP} ., (4.49)

where we have used the real symmetric field-dependent 56 x 56 matrix My, defined by
Mun = Vi Vnig +Varij V9 (4.50)

Note that M is positive definite. Its inverse, MM¥Y  can be written as
MMN = QMPONC A by (4.51)

by virtue of (B.4). This shows that det[M] = 1.
In the derivation of (f.49) we made use of the following equations,

XunXp" MMEMNC Mpg = MMV (2 P Pvijit — 3 Quri? QNji) ’
Xun9Xpo¥ MMP = MMV (2 PMijklPNijkl +3 Qw7 QNji) ’

MN.5 ijkl k)2
MPEEPYy I P = 4| Ay,

MMN QT Q' = —2| Ay TR — 284,72, (4.52)

which can be derived using various results and definitions presented in section .

5. Discussion and applications

In this paper we have presented the complete construction of all gaugings of four-
dimensional maximal supergravity. We have shown that gaugings can be completely
characterized in terms of an embedding tensor, subject to a linear and a quadratic con-
straint, (B-19) and (£.9), respectively. A generic gauging can involve both electric and
magnetic charges, together with two-form tensor fields transforming in the 133 represen-
tation of E(7). The addition of magnetic vector fields and the two-rank tensor fields does
not lead to additional degrees of freedom owing to the presence of extra gauge invariances
associated with these fields. We have presented the full Lagrangian of the theory in (4.4§)
and the supersymmetry transformations in ({.39).
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In this last section we briefly demonstrate the group-theoretical approach of this paper
to construct actual gaugings of maximal supergravity in four dimensions. The starting
point is the construction of a solution to the constraints (B.19) and (2.9) on the embedding
tensor Opr*. The former one is a linear constraint whose general solution is explicitly
known as the 912-dimensional image of a projector. The most straightforward strategy
will thus be to start from a particular solution to this constraint and impose on it the
quadratic constraint.

Of course, when one wants to see if a specific subgroup of E7(7) can be gauged, it suf-
fices to simply verify whether the constraints are satisfied on the corresponding embedding
tensor. In other cases, when one wants to explore a variety of gaugings, it is often useful to
first select a subgroup Gy C E7(7) in which the gauge group will be embedded eventually.
This group may be a manifest invariance of the ungauged Lagrangian in a suitable elec-
tric/magnetic duality frame. When this is the case, the gauging will only involve electric
gauge fields and there is no need for introducing dual vector and tensor fields. Branching
the 912 of E7(7) under G and scanning through the different irreducible components allows
a systematic study of the quadratic constraint (R.9) and thereby a full determination of the
corresponding admissible gaugings. In that case the closure of the gauge group is already
guaranteed, owing to the equivalent formulation () of the quadratic constraint, so that
every solution to the linear constraint (R.12) will define a viable gauging.

A central result of this paper is that it is not necessary to restrict Gy to a group
that can be realized as an invariance of the ungauged Lagrangian that serves as a starting
point for the gauging. In that case, one must simply analyze both constraints and the
gauging may eventualy comprise both electric and magnetic charges. It is important to
realize that the scalar potential is insensitive to the issue of electric/magnetic frames, so
that its stationary point can be directly studied. Scanning through the different choices
of Gy, it is straightforward to construct the various corresponding gaugings of the four-
dimensional theory. In the following we will illustrate the strategy by first reproducing
the known gaugings, subsequently sketching the construction of gaugings related to flux
compactifications of IIA and IIB supergravity and finally giving some other examples,
including Scherk-Schwarz reductions from higher dimensions.

5.1 Known gaugings

As first examples, let us briefly review the known gaugings embedded in the groups
Go = SL(8,R) and Go = Eg(s x SO(1,1), respectively. It is known that there are cor-
responding ungauged Lagrangians which have these groups as an invariance group. Hence
we can restrict ourselves to analyzing the linear constriant. With the group Gy = SL(8,R),
the branching of the E7(7) representations associated with the vector fields, the adjoint
representation and the embedding tensor, is as follows,

56 — 28 + 28,
133 — 63+ 70,
912 — 36 + 420 + 36’ + 420’ (5.1)
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where the 28 representation in the first decomposition denotes the electric gauge fields.
The possible couplings between vector fields and E7(7) symmetry generators induced by
the various © components according to (2.)) can be summarized in the table

| 28 28/
63 | 36 +420 36 + 420’ (5.2)
70 | 420’ 420

where the left column represents the E7(7) generators, and the top row represents the
vector fields. The entries correspond to the conjugate representations of the respective
components of the embedding tensor belonging to the 912 representation. Restricting to
gaugings embedded into Gg = SL(8,R), the upper left entry is relevant. However, the 420
would alsocouple to the magnetic gauge fields and the remaining generators of E7(7) so that
the embedding tensor is restricted to live in the 36’ (i.e. the conjugate of the 36 indicated
in the table). Every element in the 36’ defines a viable gauging. A closer analysis shows [f]
that modulo SL(8,R) conjugation the general form of © € 36’ is given by

Om® = Oup‘D :5[0;193]1) , O4p = diag{1,...,1,—1,...,-1,0,...,0}, (5.3)

p q T

with A, B =1,...,8, and reproduces the CSO(p, ¢, ) gaugings (B, B7], where p+q+r = 8.
There are 24 inequivalent gaugings of this type.

Choosing the group Go = Eg(g) x O(1,1), which is group that can be used to identify
gaugings that are related to compactifications from five dimensions, the branchings of the
three relevant representations are,

56 — 1_3 —{—ﬁ,1 + 2714+ 1,3,
133 — 27 o+ 19+ 78¢ + 2_7+2 s
912 — 78_3+ ﬁ,1 +351_1 4351 +271 + 78,3, (54)

The first decomposition again captures the split into electric and magnetic vector fields with
the graviphoton transforming in the 1_3 and the 27 gauge fields from the five-dimensional
theory in the 27_1 representation. The couplings between vector fields and E7(7) symmetry
generators induced by the various © components can be summarized in a table analogous

to (52,

13 27, 27, 13
27_9 78_3 m_l + 2_7_1 274
78y | 78_3 ﬁ,1 + ﬁ,1 3511 +27,1 7843 (55)
1y 274 274
ﬁJrQ ﬁ,1 3511 + 2744 78,3

The table shows that a gauging involving only electric vector fields can only live in the
783 representation. Vice versa, every such embedding tensor automatically satisfies the
quadratic constraint (R.1¢) and thus defines a viable gauging. These are the theories

descending from five dimensions by Scherk-Schwarz reduction [§, i, fi.
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5.2 Flux gaugings

Here we consider gaugings of N = 8 supergravity that can in principle be generated by
(generalized) toroidal flux compactifications of type-IIB and M-theory. The proper setting
to discuss these theories is a decomposition E7(7) group according to SL(2) x SL(6) and
SL(7), respectively. For the type-IIB theory this embedding is realized as

E77y — SL(6) x SL(3) — SL(6) x SL(2) x SO(1,1) . (5.6)

The S-duality group coincides with the SL(2) factor. Electric and magnetic charges trans-
form according to the 56 representation which branches as

56 — (6',1)_ 2+ (6,2) 1+ (20,1)p + (6',2)11 + (6,1),5 .

Here, the (6',1)_2 and (6,2)_; representations descend from graviphotons and two-forms,
respectively, while the four-form generates gauge fields which, together with their magnetic
duals, constitute the (20,1)g. The couplings between vector fields and Er(7) symmetry

generators is summarized in the following table [f],

(6,1) 2 (6,2)1 (20,1)0 (6",2)11 (6,1)10
(1,2)_3 (6,1) 4 (20,2)_3 (6,3+1) (6,2) 1
(15,1)_o | (6,1)_4 (20,2)_3 (6'+84",1)_ (6+84,2)_; (70+20,1)0
(15/,2)_1| (20,2)_3 (6/+84',1) o+ (6',3)_2 (6+84,2)_;  (20,3+1)o+ (70',1)g (6/+84",2),,
(1,1)0 (6",1) 2 (6,2)1 (20,1)o (6",2) 41 (6,1)12
(35,1)0 |(6'+84',1) o (6+84,2) (70+70'+20,1)o (6/+847,2) 1 (6+84,1) 12
(1,3)o (6",3)-2 (6,2)1 (20,3)o (6",2)11 (6,3)+2
(15,2)41 | (6+84,2)_;  (20,3+1)0 + (70,1), (6/+84’,2),1 (6+84,1) 2+ (6,3),2 (20,2)13
(15',1) 12 | (70’+20,1)o (6/+84",2),, (6+84,1) 5 (20,2) 3 (6/,1) 14
(1,2)4s (6',2)41 (6,3+1)42 (20,2)43 (6",1)44

The entries of the table correspond to the various conjugate representations of the re-
spective components of the embedding tensor. Within the 912 all these components appear
with multiplicity 1 apart from the (6,2)_; and (6’,2);1 which appear with multiplicity 2.
It follows from the table that an embedding tensor in the (6',1),4 defines a purely electric
gauging which thus automatically satisfies the quadratic constraint. This corresponds to
the theory induced by a five-form flux. A three-form flux on the other hand induces a
component of the embedding tensor in the (20, 2)3 represention, which involves electric
and magnetic gauge fields in the (20, 1)y. Consistency thus requires to further impose the

A

quadratic constraint (R.14) onto ©, leading to [{

with 0,7 = 1,2, A,¥ = 1,...,6. Here Opsr” denotes the components of the embedding
tensor corresponding to the (20, 2) 3 representation. The above constraint is precisely the
tadpole cancellation condition on the NS-NS and R-R 3-form fluxes.

Gaugings defined by ©-components with lower SO(1,1) grading will correspond to
the theories induced by geometric fluxes (twists), non-geometric compactifications, etc. It
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follows from the table that the quadratic constraint (R.1€) leads to more and more consis-
tency conditions among these lower ©-components as they tend to stronger mix electric
and magnetic vector fields. It is, however, straightforward to work out these constraints
by branching (R.16) accordingly (recall also that the total representation content of this
constraint is given by the 133 + 8645) of E7(7). Another representation in the above table
which is relevant to string compactifications is the (84,1),,. It corresponds to the geo-
metric flux Tax’ which describes a “twisted” six-torus. The quadratic constraint implies
the following condition,

T[Azr TH]FA =0. (5.8)
One may wonder which components of the embedding tensor describe the non-geometric-
fluxes Q2>" and RMT obtained from 7oy by applying two subsequent T-dualities along

the directions . and A, respectively 29, Bd]. Using the flux/weight correspondence defined
in [B1]] we can identify these non-geometric fluxes with the following representations:

Qx™ e (84,2),, ;  RM'€(20,3),. (5.9)

We notice that T-duality changes the SL(2,R) representation of the flux on which it acts.
We leave a detailed analysis for future work.

A similar analysis of M-theory fluxes has been performed in [BJ], see also [B3, B4]. In
this case the relevant embedding of the torus GL(7) is according to

Ez¢y — SL(8) — SL(7) x SO(1,1) . (5.10)
Electric and magnetic charges transform according to the branching
56 > 7 5 +21_; +21", + 743, (5.11)

where the 7’ 5 and the 21_; descend from graviphotons and antisymmetric tensors, re-
spectively. The couplings between vector fields and E;(7) symmetry generators are given

as [B3,

7, 21, 21/, Tis
T_4 1_7 35_5 (140/ + 7/)_3 (28 + 21)_1
35L2 35_5 140L3 (21 + 224)_1 (21' + 224/)+1
48) | (140’ +7)_3 (21+28+224)_; (21 +28 +224'),; (140 +7),3
10 7, 21, 21/, 743
35, | (214+224)_;  (21'+224'),, 140, 5 35/,
L @8 421, (1404 7). 35/ 17

The table shows that an embedding tensor in the 1,7 and in the 35/, 5 representation define
electric gaugings that automatically satisfy the quadratic constraint. They describe the
theories obtained by switching on in eleven dimensions a seven-form g7 and a four-form
flux gasra, respectively. The former theory has in fact already been considered in [BH].
An embedding tensor in the 1403 corresponds to the parameters 755~ of a geometric flux
and is subject to the quadratic constraint (R.14),

s e =0, (5.12)
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with A, ¥ =1,...,7, corresponding to the Jacobi identity of the associated gauge algebra. If
g7, gasra and the geometric flux Tax,! are switched on together, the second order constraint
on the embedding tensor, as was shown in [BJ], yields the additional condition

Tias™ grneja =0, (5.13)
originally found in [B3].

5.3 Gaugings of six-dimensional origin

In this subsection we demonstrate our method for gaugings that arise, in particular, from
a two-fold Scherk-Schwarz reduction from six space-time dimensions [[l, ff]. The Scherk-
Schwarz reduction of maximal supergravity from D = 5 to D = 4 spacetime dimensions was
first constructed in [R§ and recently this theory was obtained more directly in four space-
time dimensions by gauging [[J]. For a general treatment of Scherk-Schwarz reductions in
relation to gauged maximal supergravities, see [[i], where the Scherk-Schwarz reduced max-
imal supergravity from D = 6 to D = 5 was constructed as a gauging of five-dimensional
supergravity.
The proper choice for Gg is the maximal subgroup

Erty — SO(5,5) x SL(2,R) x O(1,1) , (5.14)

where SO(5,5) represents the non-linear symmetry group of maximal supergravity in six
dimensions and SL(2,R) x O(1,1) is the group corresponding to the reduction on a two-

torus. Electric and magnetic charges branch as
56 — (1,2)_,+(16,1)_; + (10,2), + (16,1)11 + (1,2)42 , (5.15)

where the (1,2) , and (16,1) , correspond to graviphotons and six-dimensional vectors,
respectively, while the (10,2), combines the electric vectors and their magnetic duals
descending from the self-dual two-forms in six-dimensions. Their couplings to the Er

symmetry generators are summarized in the table below,

(172)—2 (1671)—1 (1072)0 7(1671)-;1 (172)+2
(10,1)_, (16,1)_4 (1+45,2)_, (16 +144,1)_, (10,2),
(16,2)_, (16,1)_, (1+45,2) , (16,3+1)_;+(144,1)_;, (10+120,2), (16,3+1),
(173)0 (172)72 (Ev 3)71 (1072)0 (1673)+1 (172)+2
(171)0 (172)72 _(1671)71 (1072)0 (167_1)+1 (172)+2
(45,1), (45,2)_, (16 4+ 144,1)_, (10 + 120, 2), (16 +144,1) (45,2) .,
(16,2),, | (16,3+1)_; (10+120,2), (16,3+1),, +(144,1), (1+45,2),, (16,1) 4
(10,1)_, (10,2), (16 +144,1) (1+45,2), (16,1) 4

This shows that an embedding tensor in the (16, 1) 3 defines a consistent electric gauging
corresponding to the theory obtained by giving a 7% flux to the six-dimensional vector field
strength. A Scherk-Schwarz gauging is defined by an embedding tensor in the (45,2) 9, i.e.
a tensor of type 0y mn with m,n =1,...,10, u = 1,2. This corresponds to identifying the
two gauge group generators X, = 0, nn t™" generating a subgroup of SO(5,5) associated
with the dependence of the fields on the internal 72 according to the Scherk-Schwarz
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ansatz, which couple to the two graviphotons. As this gauging a priori involves electric
and magnetic vector fields, the quadratic constraint (R.16) poses a nontrivial restriction,

€™ Oy mp Owng =0, (5.16)

which implies [X,, X,] = 0. This is consistent as these generators must commute in the
multiple Scherk-Schwarz reduction. The complete gauge algebra in four dimensions takes
the form

[Xua Xv] =0 ) [Xw XO'] X Hu,mn(rmn)aT X’T )

[XU7 me] X eu,mn nnp Xpw 9 [XU7 X’T] X euveu,mn(rmnp)zﬂ' Xp’U 9 (5'17)

with SO(5,5) I-matrices I'.. We intend to give a detailed analysis of this theory elsewhere.
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