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1. Introduction

Maximal supergravity in four space-time dimensions contains 28 vector gauge fields, which,

in principle, can couple to charges assigned to the various fields. To preserve supersymmetry

these gauge field interactions must be accompanied by masslike terms for the fermions and

a scalar potential, as was first exhibited in the gauging of SO(8) [1]. In general it is far from

obvious which gauge groups are admissible and will lead to a supersymmetric deformation

of the ungauged Lagrangian. Initially non-compact versions and/or contractions of SO(8)

were shown to also lead to viable gaugings [2], followed, much more recently, by the so-

called ‘flat’ gauge groups [3] that one obtains upon Scherk-Schwarz reductions [4, 5] of

higher-dimensional theories, as well as by several other non-semisimple groups [6].

In [7] we presented an ab initio analysis of all possible gaugings of four-dimensional

maximal supergravity (this was reviewed in [8]). The gauge group, Gg, is a subgroup of

the E7(7) duality group that leaves the combined field equations and Bianchi identities

invariant. The decomposition of the gauge group generators in terms of the E7(7) gen-

erators is parametrized by the so-called embedding tensor Θ, which determines not only

the gauge-covariant derivatives, but also the so-called T -tensors that define the masslike
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terms and the scalar potential. The admissible embedding tensors can be characterized

group-theoretically and this enables a systematic discussion of all possible gaugings. In [7],

several examples were presented which demonstrate how one can conveniently analyze

various gaugings in this way. Another example, which is relevant for IIB flux compactifica-

tions, was worked out in [9]. The same strategy has been applied to maximal supergravity

in various space-time dimensions [10 – 13], as well as to theories with a lower number of

supercharges [14, 15].

In this paper we present a complete analysis of all gaugings of maximally supersym-

metric four-dimensional supergravity. We establish that a gauging is in fact completely

characterized by the embedding tensor, which is subject to two constraints. One con-

straint, which is linear, follows from supersymmetry and implies that the embedding tensor

belongs to the 912 representation of E7(7). A second constraint is quadratic and implies

that the square of the embedding tensor does not contain the 133 + 8645 representation.

This constraint ensures the closure of the gauge group. Furthermore it implies that the

embedding tensor is gauge invariant, and it ensures that the charges can always be chosen

in the electric subsector upon a suitable electric/magnetic duality transformation. In this

approach one can establish the consistency of the gauging prior to evaluating the explicit

Lagrangian. Any given embedding tensor that satisfies these two constraints, defines a

consistent supersymmetric and gauge invariant Lagrangian. In fact, we will present uni-

versal expressions for the Lagrangian and the supersymmetry transformations of gauged

N = 8 supergravities, encoded in terms of the embedding tensor. The fermionic masslike

terms and the scalar potential have a unique structure in terms of the so-called T -tensor,

which is linearly proportional to the embedding tensor. Here we should perhaps empha-

size that we our results are obtained entirely in a four-dimensional setting. As is well

known, gaugings can originate from the compactification of a higher-dimensional theory

with or without fluxes, or from Scherk-Schwarz reductions. But whatever their origin,

the four-dimensional truncations belong to the class of theories discussed in this paper,

provided they are maximally supersymmetric (irrespective of whether the theory will have

maximally supersymmetric groundstates).

A gauging can involve both magnetic and electric charges, each of which will require

corresponding gauge fields. These can be accommodated by making use of a new formal-

ism [16], which, in the case at hand, requires the presence of tensor gauge fields trans-

forming in the (adjoint) 133 representation of E7(7). Neither the magnetic vector fields

nor the tensor fields lead to additional degrees of freedom owing to the presence of extra

gauge invariances associated with these fields. Because of the extra fields, any embedding

tensor that satisfies the above constraints will lead to a consistent gauge invariant and

supersymmetric theory, irrespective of whether the charges are electric or magnetic.

There are two characteristic features that play an important role in this paper.

One that is typical of four-dimensional theories with vector gauge fields, concerns elec-

tric/magnetic duality [17]. For zero gauge-coupling constant, the gauge fields transform

in the 56 representation of E7(7), and decompose into 28 electric gauge fields and their

28 magnetic duals. The magnetic duals do not appear in the Lagrangian, so that the
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Lagrangian cannot be invariant under E7(7), but the combined equations of motion and

Bianchi identities of the vector fields do transform covariantly in the 56 representation [18].

In fact the rigid symmetry group of the Lagrangian is a subgroup of E7(7) under whose

action electric gauge fields are transformed into electric gauge fields. This group is not

unique. It depends on the embedding of E7(7) inside the larger duality group Sp(56;R),

which determines which gauge fields belonging to the 56 representation play the role of elec-

tric and which ones the role of magnetic gauge fields. The choice of the electric/magnetic

frame fixes the rigid symmetry group of the ungauged Lagrangian, and different choices

yield in general different Lagrangians which are not related to each other by local field

redefinitions.

The conventional approach for introducing local gauge invariance relies on the rigid

symmetry group of the ungauged Lagrangian as the gauge group has to be a subgroup

thereof. The procedure requires the introduction of minimal couplings involving only the

electric vector fields, and therefore it explicitly breaks the original E7(7) duality covariance

of the field equations and Bianchi identities. The advantage of the formulation proposed

in [16] is two-fold. On the one hand, minimal couplings involve both electric and magnetic

vector fields in symplectically invariant combinations with the corresponding components

of the embedding tensor. This ensures that, irrespective of the gauge group, the E7(7)

invariance can formally be restored at the level of the field equations and Bianchi identities,

provided the embedding tensor is treated as a “spurionic” object transforming under E7(7)

and subject to the two aforementioned group-theoretical constraints. On the other hand,

we are no longer restricted in the choice of the gauge group by the rigid symmetries of

the original ungauged Lagrangian. Regardless of the electric/magnetic frame, we may

introduce any gauge group contained in E7(7) corresponding to an embedding tensor that

satisfies the two E7(7)-covariant constraints. If this gauge group is not a subgroup of the

rigid symmetry group of the ungauged Lagrangian, the embedding tensor will typically

lead to magnetic charges and magnetic gauge fields together with the tensor fields. The

latter will play a crucial role in realizing the gauge invariance of the final Lagrangian. An

interesting feature of the resulting theory is that the scalar potential is described by means

of a universal formula which is independent of the electric/magnetic duality frame.

A second, more general, feature of maximal supergravity is that the scalar fields

parametrize a symmetric space, in this case the coset space E7(7)/SU(8). The standard

treatment of the corresponding gauged nonlinear sigma models is based on a formulation

in which the group SU(8) is realized as a local invariance which acts on the spinor fields

and the scalars; the corresponding connections are composite fields. A gauging is based

on a group Gg ⊂ E7(7) whose connections are provided by (some of the) elementary vector

gauge fields of the supergravity theory. The coupling constant associated with the gauge

group will be denoted by g. One can impose a gauge condition with respect to the local

SU(8) invariance which amounts to fixing a coset representative for the coset space. In

that case the E7(7)-symmetries will act nonlinearly on the fields and these nonlinearities

make many calculations intractable. Because it is much more convenient to work with

symmetries that are realized linearly, the best strategy is therefore to postpone this gauge

fixing until the end. This strategy was already adopted in [1], but in this paper we find it
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convenient to introduce a slightly different definition of the coset representative.

Let us end this introduction by making some remarks on the physical significance

of the embedding tensor. As previously anticipated, the low-energy dynamics of any

superstring/M-theory compactification that admits a four dimensional N = 8 effective

supergravity description, has to be contained within the class of theories discussed in the

present paper. From the higher-dimensional perspective a gauging is in general char-

acterized by constant background quantities which may be related to fluxes of higher-

dimensional field strengths across cycles of the compactification manifold (form-fluxes), or

just associated with the geometry of the internal manifold (geometric-fluxes), such as the

tensor defining a twist in the topology in an internal torus [4]. In all known instances of

gauged extended supergravities arising from superstring/M-theory compactifications, these

background quantities enter the four-dimensional theory as components of the embedding

tensor. Interestingly enough, in these cases the quadratic constraint on the embedding

tensor follows from consistency of the higher-dimensional field equations and Bianchi iden-

tities. For instance, in type-II compactifications in the presence of form-fluxes the quadratic

constraint expresses the tadpole cancellation condition. This condition, in the context of

compactifications which are effectively described by N = 8 four-dimensional supergravity,

poses severe restrictions on the fluxes since there is no room in this framework for localized

sources such as orientifold planes. This is the case, for example, for the type-IIB theory

compactified on a six-torus in the presence of NS-NS and R-R form-fluxes. The situation

is clearly different for compactifications yielding N ≤ 4 theories in four dimensions.

Having identified the background quantities in a generic flux compactification with

components of the embedding tensor, our formulation of gauged maximal supergravity

may provide a useful setting for studying the duality relations between more general

superstring/M-theory vacua. Indeed the embedding tensor transforms covariantly with

respect to the full rigid symmetry group E7(7) of the four-dimensional theory, which is

expected to encode the various string dualities. For instance, the generic T-duality trans-

formations on the string moduli of the six-torus, within the same type-II theory, are im-

plemented by the SO(6, 6; Z) subgroup of E7(7).

This paper is organized as follows. In section 2 the embedding tensor is introduced

together with an extensive discussion of the constraints it should satisfy. It is demon-

strated in a special electric/magnetic frame how these constraints ensure the existence of

a Lagrangian that is invariant under the gauge group specified by the embedding tensor.

Furthermore it is explained how to incorporate both electric and magnetic charges and

corresponding gauge fields. In section 3 the corresponding T -tensor is introduced. As

a result of the constraints on the embedding tensor the T -tensor satisfies a number of

identities which are important for the supersymmetry of the Lagrangian. In section 4 the

Lagrangian and the supersymmetry transformations are derived. Salient features are the

universal expressions for the fermionic masslike terms and the scalar potential, which are

induced by the gauging, as well as the role played by the magnetic gauge fields. Some

applications, including explicit examples of new gaugings, are reviewed in section 5.
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2. The embedding tensor

We start by considering (abelian) vector fields Aµ
M transforming in the 56 representa-

tion of the E7(7) duality group with generators denoted by (tα)M
N , so that δAµ

M =

−Λα(tα)N
M Aµ

N . These vector potentials can be decomposed into 28 electric potentials

Aµ
Λ and 28 magnetic potentials AµΛ. In the conventional supergravity Lagrangians only

28 electric vectors appear, but at this stage we base ourselves on 56 gauge fields. In due

course we will see how the correct balance of physical degrees of freedom is nevertheless

realized. The gauge group must be a subgroup of E7(7), so that its generators XM , which

couple to the gauge fields Aµ
M , are decomposed in terms of the 133 independent E7(7)

generators tα, i.e.,

XM = ΘM
α tα , (2.1)

where α = 1, 2, . . . , 133 and M = 1, 2, . . . , 56. The gauging is thus encoded in a real

embedding tensor ΘM
α belonging to the 56×133 representation of E7(7). The embedding

tensor acts as a projector whose rank r equals the dimension of the gauge group. One

expects that r ≤ 28, because the ungauged Lagrangian should be based on 28 vector fields

to describe the physical degrees of freedom. As we shall see shortly, this bound is indeed

satisfied. The strategy of this paper is to treat the embedding tensor as a spurionic object

that transforms under the duality group, so that the Lagrangian and transformation rules

remain formally invariant under E7(7). The embedding tensor can then be characterized

group-theoretically. When freezing ΘM
α to a constant, the E7(7)-invariance is broken.

An admissible embedding tensor is subject to a linear and a quadratic constraint, which

ensure that one is dealing with a proper subgroup of E7(7) and that the corresponding

supergravity action remains supersymmetric. These constraints are derived in the first

subsection. A second subsection elucidates some of the results in a convenient E7(7) basis.

A third subsection deals with the introduction of tensor gauge fields and their relevance

for magnetic charges.

2.1 The constraints on the embedding tensor

The fact that the XM generate a group and thus define a Lie algebra,

[XM ,XN ] = fMN
P XP , (2.2)

with fMN
P the as yet unknown structure constants of the gauge group, implies that the

embedding tensor must satisfy the closure condition,

ΘM
α ΘN

β fαβ
γ = fMN

P ΘP
γ . (2.3)

Here the fαβ
γ denote the structure constants of E7(7), according to [tα, tβ ] = fαβ

γ tγ . The

closure condition implies that the structure constants fMN
P satisfy the Jacobi identities

in the subspace projected by the embedding tensor,

f[MN
Q fP ]Q

R ΘR
α = 0 . (2.4)
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Using the gauge group generators XM one introduces gauge covariant derivatives,

Dµ = ∂µ − g Aµ
M XM , (2.5)

where g denotes an uniform gauge coupling constant. These derivatives lead to the covariant

field strengths,

ΘM
α Fµν

M = ΘM
α (∂µAν

M − ∂νAµ
M − g fNP

M Aµ
NAν

P ) . (2.6)

The gauge field transformations are given by

ΘM
α δAµ

M = ΘM
α (∂µΛM − g fNP

M Aµ
N ΛP ) . (2.7)

Because of the contraction with the embedding tensor, the above results apply only to an

r-dimensional subset of the gauge fields; the remaining ones do not appear in the covariant

derivatives and are not directly involved in the gauging. However, the r gauge fields that

do appear in the covariant derivatives, are only determined up to additive terms linear in

the 56 − r gauge fields that vanish upon contraction with ΘM
α.

While the gauge generators (2.1) act in principle uniformly on all fields that transform

under E7(7), the gauge field transformations are a bit more subtle to determine. This

is so because the gauge fields involved in the gauging should transform in the adjoint

representation of the gauge group. At the same time their charges should coincide with XM

in the 56 representation, so that (XM )N
P must decompose into the adjoint representation

of the gauge group plus possible extra terms which vanish upon contraction with the

embedding tensor,

(XM )N
P ΘP

α ≡ ΘM
β tβN

P ΘP
α = −fMN

P ΘP
α . (2.8)

These extra terms, pertaining to the gauge fields that do not appear in the covariant

derivatives, will be considered in due course. Note that (2.8) is the analogue of (2.3) in

the 56 representation. The combined conditions (2.3) and (2.8) imply that Θ is invariant

under the gauge group and yield the E7(7)-covariant condition

CMN
α ≡ fβγ

α ΘM
β ΘN

γ + tβN
P ΘM

β ΘP
α = 0 . (2.9)

Obviously CMN
α can be assigned to irreducible E7(7) representations contained in the

56 × 56 × 133 representation. The condition (2.9) encompasses all previous results: it

implies that

[XM ,XN ] = −XMN
P XP , (2.10)

so that (2.9) implies a closed gauge algebra, whose structure constants, related to XMN
P

in accord with (2.8), have the required antisymmetry. Hence (2.9) is indeed sufficient for

defining a proper subgroup embedding.1

1Note that for an abelian gauge group we have XMN
P ΘP

α = 0. Using (2.12) this leads to

tr(XM XN ) = 0.
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The embedding tensor satisfies a second constraint, which is required by supersymme-

try. This constraint is linear and amounts to restricting ΘM
α to the 912 representation [7].

From

56 × 133 = 56 + 912 + 6480 , (2.11)

one shows that this condition on the representation implies the equations,

tαM
N ΘN

α = 0 , (tβtα)M
N ΘN

β = −1

2
ΘM

α , (2.12)

where the index α is raised by the inverse of the E7(7)-invariant metric ηαβ = tr(tαtβ).

As a result of the representation constraint, the representation content of CMN
α can

be further restricted as from (2.12) one can derive the following equations,

tαN
P CMP

α = 0 , (tβ tα)N
P CMP

β = −1

2
CMN

α , tαM
P CPN

α = tαN
P CPM

α . (2.13)

They imply that CMN
α should belong to representations contained in 56 × 912. On the

other hand, the product of two Θ-tensors belongs to the symmetric product of two 912

representations. Comparing the decomposition of these two products,2

(912 × 912)s = 133 + 8645 + 1463 + 152152 + 253935 ,

56 × 912 = 133 + 8645 + 1539 + 40755 , (2.14)

one deduces that CMN
α belongs to the 133+8645 representation. Noting the decomposi-

tion (133× 133)a = 133 + 8645, we observe that there is an alternative way to construct

these two representations which makes use of the fact that Sp(56; R), and thus its E7(7)

subgroup, has an invariant skew-symmetric matrix ΩMN , which we write as,

ΩMN =

(
0 1

−1 0

)

. (2.15)

The conjugate matrix ΩMN takes the same form, so that ΩMNΩNP = −δM
P . In this way

one derives an equivalent version of the constraint (2.9),

ΘM
αΘN

β ΩMN = 0 ⇐⇒ ΘΛ [αΘΛ
β] = 0 , (2.16)

which is only equivalent provided the representation constraint (2.12) is imposed. The

constraint (2.16) implies that the Θα can all be chosen as electric vectors upon a suitable

Sp(56; R) transformation, implying that all the nonzero components of the 133 vectors Θα

cover an r-dimensional subspace parametrized by the gauge fields Aµ
M with M = 1, . . . , r

and r ≤ 28. In this basis XMN
P can be written in triangular form,

XM =

(−fM aM

0 bM

)

, (2.17)

2We used the LiE package [19] for computing the decompositions of tensor products and the branching

of representations.
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where the r×r upper-left diagonal block coincides with the gauge group structure constants

and the submatrices aM and bM do not contribute to the product (XM )N
P ΘP

α. The

lower-left (56 − r) × r block vanishes as a result of (2.8). It is easy to see that aM and

bM cannot both be zero. If that were the case, we would have fMN
P = −XMN

P , which is

antisymmetric in M and N . Hence,

ΘN
α tαM

P = −ΘM
α tα N

P . (2.18)

Contracting this result by (tβ)P
M leads to tα tβ Θα = −Θβ which is in contradiction with

the representation constraint (2.12). In the next subsection we give a more detailed analysis

of the submatrices aM and bM , which shows that bM never vanishes.

Let us now proceed and find the restrictions on XMN
P . First of all, E7(7) invariance of

ΩMN implies that XMNP = XMN
QΩPQ is symmetric in N and P . Furthermore, X belongs

to the 912 representation (remember that (tα)M
N transforms as an E7(7) invariant tensor,

so that XM transforms in the same representation as the embedding tensor), which is,

however, not contained in the symmetric product (56×56×56)s. Consequently it follows

that the fully symmetric part of XMNP must vanish. Likewise, contractions of XMN
P will

also vanish, as they do not correspond to the 912 representation. Hence XMN
P has the

following properties,

XM [NP ] = 0 , X(MNP ) = 0 , XMN
N = XMN

M = 0 . (2.19)

The first condition implies that

XMΛ
Σ = −XM

Λ
Σ , XMΛΣ = XMΣΛ , XM

ΛΣ = XM
ΣΛ , (2.20)

whereas the second one implies

X(ΛΣΓ) = 0 ,

X(ΛΣΓ) = 0 ,

2X(ΓΛ)
Σ = XΣ

ΛΓ ,

2X(ΓΛ)
Σ = XΣ

ΛΓ .
(2.21)

The constraints (2.20) and (2.21) coincide with the constraints that we have adopted in a

more general four-dimensional context in [16].

The constraint (2.16) motivates the definition of another tensor ZM,α, which is orthog-

onal to the embedding tensor, i.e. ZM,αΘM
β = 0,

ZM,α ≡ 1

2
ΩMN ΘN

α =⇒
{

ZΛα = 1
2ΘΛα ,

ZΛ
α = −1

2ΘΛ
α .

(2.22)

As a consequence of the second equation of (2.19), one may derive,

X(MN)
P = ZP,α dα MN , (2.23)

where dα MN is an E7(7)-invariant tensor symmetric in (MN),

dα MN ≡ (tα)M
P ΩNP . (2.24)

The more general significance of (2.23) was discussed in [20].
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2.2 A special E7(7) basis

To appreciate the various implications of the constraints on XMN
P , we consider a special

basis in which all the charges are electric. Hence magnetic charges vanish by virtue of

ΘΛα = 0. A vector V M in the 56 representation can then be decomposed according to

V M −→ (V Λ, VΛ) −→ (V A, V a, VA, Va) , (2.25)

with A = 1, . . . , r and a = r + 1, . . . , 28; i.e., electric (gauge field) components are written

with upper indices A, a and their magnetic duals with corresponding lower indices A, a.

The components V a then span the subspace defined by the condition ΘΛ
α V Λ = 0. Conse-

quently, V A and VA are defined up to terms proportional to the V a and Va, respectively.

Obviously only the ΘA
α are nonvanishing and the XMN

P are only nonzero when M = A.

Imposing (2.23) and (2.24), it follows that a block decomposition of XAN
P is then as follows

(row and column indices are denoted by B, b and C, c, respectively),

XAN
P =









−fAB
C hAB

c CABC CABc

0 0 CACb 0

0 0 fAC
B 0

0 0 −hAC
b 0









, (2.26)

where

h(AB)
c = C(AB)c = CA[BC] = C(ABC) = f(AB)

C = fAB
B = 0 . (2.27)

The last equation implies that the gauge group is unimodular. The closure relations (2.2)

imply a number of nontrivial identities,

f[AB
D fC]D

E = 0 ,

f[AB
D hC]D

a = 0 ,

fAB
E CECD − 4 f(C[A

E CB]D)E + 4h(C[A
a CB]D)a = 0 ,

f[AB
D CC]Da = 0 . (2.28)

The transformations generated by (2.26) imply that electric gauge fields transform exclu-

sively into electric gauge fields,

δAµ
A = ΛB fBC

A Aµ
C ,

δAµ
a = −ΛB hBC

a Aµ
C , (2.29)

where, for the moment, we keep the transformation parameters ΛA space-time independent.

The magnetic gauge fields, on the other hand, transform into electric and magnetic gauge

fields,

δAµA = −ΛB(fBA
C Aµ C − hBA

c Aµ c + CBAC Aµ
C + CBAc Aµ

c) ,

δAµ a = − ΛB CBAa Aµ
A . (2.30)
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Because the Lagrangian does not contain the magnetic gauge fields in this case, the ques-

tion arises how the gauge transformations are realized. The answer is provided by elec-

tric/magnetic duality. The above variations (2.29) and (2.30) generate a subgroup of these

duality transformations that must be contained in E7(7). General electric/magnetic trans-

formations constitute an even bigger group Sp(56;R). In the abelian case they are defined

by rotations of the 28 field strengths Fµν
Λ and the 28 conjugate tensors Gµν Λ defined by

Gµν Λ = i εµνρσ
∂L

∂Fρσ
Λ

. (2.31)

The corresponding field equations and Bianchi identities constitute 56 equations,

∂[µFνρ]
Λ = 0 = ∂[µGνρ] Λ , (2.32)

which are clearly invariant under rotations of the 56 field strengths Gµν
M , defined by

Gµν
M ≡

(
Fµν

Λ

GµνΣ

)

. (2.33)

The equations (2.32) show that the Gµν
M can be expressed in terms of 56 vector potentials,

and this is how the electric and magnetic gauge fields appear in the abelian case. Hence

we may write,

Gµν
M = 2 ∂[µAν]

M . (2.34)

Electric/magnetic duality acts in principle on (abelian) field strengths rather than on cor-

responding gauge fields, because the field strengths GµνΛ are not independent according

to (2.31).

Let us briefly return to the general Sp(56; R) dualities, which can be decomposed as

follows,
(

FΛ

GΛ

)

−→
(

UΛ
Σ ZΛΣ

WΛΣ VΛ
Σ

)(

FΣ

GΣ

)

, (2.35)

where the (real) constant matrix leaves the skew-symmetric matrix ΩMN invariant. This

ensures that the new dual field strengths GµνΛ can again be written in the form (2.31) but

with a different Lagrangian. These duality transformations thus define equivalence classes

of Lagrangians that lead to the same field equations and Bianchi identities. They are

generalizations of the duality transformations known from Maxwell theory, which rotate

the electric and magnetic fields and inductions (for a review of electric/magnetic duality,

see [17]). An E7(7) subgroup of these transformations, combined with transformations

on the scalar fields, constitutes an invariance group, meaning that the combined field

equations and Bianchi identities (including the field equations for the other fields) before

and after the E7(7) transformation follow from an identical Lagrangian. Only the vector

field strengths (2.33) and the scalar fields (to be introduced in section 3) are subject to

these E7(7) transformations. The other fields, such as the vierbein field and the spinor

fields, are inert under E7(7).
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To be more specific let us introduce the generic gauge field Lagrangian that is at most

quadratic in the field strengths, parametrized as in [16],

e−1Lvector = −1

4
i

{

NΛΣ F+
µν

Λ F+µνΣ − N̄ΛΣ F−
µν

Λ F−µνΣ

}

+ F+Λ
µν O+µν

Λ + F−Λ
µν O−µν

Λ

+ i[(N − N̄ )−1]ΛΣ

[

O+
µνΛO

+µν
Σ + O−

µνΛO
−µν
Σ

]

. (2.36)

Here the F±
µν are complex (anti-)selfdual combinations normalized such that Fµν = F+

µν +

F−
µν . The field-dependent symmetric tensor NΛΣ comprises the generalized theta angles

and coupling constants and O±
µν Λ represents bilinears in the fermion fields. The terms

quadratic in Oµν
Λ are such that any additional terms in the Lagrangian (which no longer

depends on the field strengths) will transform covariantly under electric/magnetic duality.

From the above Lagrangian we derive

G+
µνΛ = NΛΣ F+

µν
Σ + 2iO+

µνΛ . (2.37)

Upon an electric/magnetic duality transformation (2.35) one finds an alternative La-

grangian of the same form but with a different expression for NΛΣ and OΛ,

NΛΣ −→ (V N + W )ΛΓ [(U + ZN )−1]ΓΣ ,

O+
µν Λ −→ O+

µν Σ [(U + ZN )−1]ΣΛ , (2.38)

This result follows from requiring consistency between (2.31) and (2.35). The restriction

to Sp(56; R) ensures that the symmetry of NΛΣ remains preserved. For the E7(7) sub-

group of invariances, the transformations (2.38) must be induced by corresponding E7(7)

transformations of the scalar fields.

Let us now return to the infinitesimal gauge transformations corresponding to the

charges (2.26), which act on the field strengths according to δFµν
M = −ΛA XAN

M Fµν
N .

The abelian field strengths Fµν
Λ and GµνΛ thus transform as

δFµν
A = ΛB fBC

A Fµν
C ,

δFµν
a = −ΛB hBC

a Fµν
C ,

δGµν A = −ΛB(fBA
C Gµν C − hBA

c Gµν c + CBAC Fµν
C + CBAc Fµν

c) ,

δGµν a = −ΛB CBAa Fµν
A . (2.39)

According to (2.37) the field strengths GµνΛ depend also on fields other than the vector

fields, and in order to have an invariance, the transformations of the these fields should com-

bine with the transformations of the vector fields to yield the above variations for the dual

field strengths GµνΛ. Therefore the gauge group must be a subgroup of E7(7). In that case

it follows that the transformations (2.39) for Fµν
Λ and GµνΛ leave the Lagrangian (2.36)

invariant, up to

δL ∝ εµνρσ ΛA

[

CABC Fµν
B Fρσ

C + 2CABa Fµν
B Fρσ

a

]

. (2.40)
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This variation constitutes a total derivative when the ΛA are constant. When the parame-

ters ΛA are space-time dependent, one needs to introduce extra terms into the Lagrangian.

According to (2.26) the gauge fields transform as,

δAµ
A = ∂µΛA − g fBC

A Aµ
B ΛC ,

δAµ
a = ∂µΛa + g hBC

a Aµ
B ΛC , (2.41)

and the covariant field strengths acquire the standard non-abelian modifications,

Fµν
A → Fµν

A = ∂µAν
A − ∂νAµ

A − g fBC
A Aµ

BAν
C ,

Fµν
a → Fµν

a = ∂µAν
a − ∂νAµ

a + g hBC
a Aµ

BAν
C . (2.42)

Likewise the derivatives on the scalar fields are extended to properly covariantized deriva-

tives according to (2.5). The only gauge fields that appear in the covariant derivatives

are the fields Aµ
A, so that only these gauge fields couple to the matter fields. Note that,

according to (2.41) and (2.42), the abelian gauge fields Aµ
a couple to charges that are

central in the gauge algebra. Therefore the resulting gauge algebra is a central extension

of (2.2). Introducing formal generators X̃A and X̃a, it reads,

[X̃A, X̃B ] = fAB
C X̃C − hAB

aX̃a . (2.43)

On the matter fields the central charges X̃a vanish and X̃A = XA.

In (2.40) the abelian field strengths will be replaced by the covariant field strenths

(2.42), so that (2.40) is no longer a total derivative. Therefore the invariance of the action

requires the presence of extra Chern-Simons-like terms,

LCS ∝ g εµνρσ

[

CABC Aµ
AAν

B(∂ρAσ
C − 3

8
g fDE

CAρ
DAσ

E)

+ CABa Aµ
A(Aν

B∂ρAσ
a + Aν

a∂ρAσ
B)

+
3

8
g CABa Aµ

A(hCD
aAν

B − fCD
B Aν

a)Aρ
CAσ

D

]

. (2.44)

The identities (2.28) ensure that these terms are indeed sufficient for restoring the gauge

invariance of the Lagrangian [21, 22]. In this connection it is important that the definition

of the dual field strengths remains as in (2.31), so that GµνΛ will be defined by (2.37) with

Fµν
Λ replaced by the non-abelian field strengths Fµν

Λ defined in (2.42).

Hence we have shown that any embedding tensor that satisfies the two constraints

(2.9) and (2.12), leads to a gauge invariant Lagrangian. We emphasize once more that this

was done in the special basis (2.25), in which the charges are electric. The magnetic gauge

fields do not play a role here and in the non-abelian case they can no longer be defined in

terms of a solution of (2.34).

2.3 Magnetic potentials and antisymmetric tensor fields

In the more general setting with magnetic charges, the gauge algebra does not close, simply

because the Jacobi identity is only valid on the subspace projected by the embedding tensor
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(c.f. (2.4)). As was generally proven in [16] for four-dimensional gauge theories, one can

still obtain a consistent gauge algebra, provided one introduces magnetic gauge fields from

the beginning, together with tensor gauge fields Bµνα. In the case at hand these fields

transform in the adjoint 133 representation of E7(7). At the same time, to avoid unwanted

degrees of freedom, the gauge transformations associated with the tensor fields should act

on the (electric and magnetic) gauge fields by means of a transformation that also depends

on the embedding tensor,

δAµ
M = DµΛM − g ZM,α Ξµ α , (2.45)

where the ΛM are the gauge transformation parameters and the covariant derivative reads,

DµΛM = ∂µΛM +g XPQ
M Aµ

P ΛQ. The transformations proportional to Ξµ α enable one to

gauge away those vector fields that are in the sector of the gauge generators XMN
P where

the Jacobi identity is not satisfied (this sector is perpendicular to the embedding tensor).

These gauge transformations form a group, as follows from the commutation relations,

[δ(Λ1), δ(Λ2)] = δ(Λ3) + δ(Ξ3) ,

[δ(Λ), δ(Ξ)] = δ(Ξ̃) , (2.46)

where

Λ3
M = g X[NP ]

MΛN
2 ΛP

1 ,

Ξ3µα = dαNP (ΛN
1 DµΛP

2 − ΛN
2 DµΛP

1 ) ,

Ξ̃µα = gΛP (XPα
β + 2dαPNZN,β)Ξµβ . (2.47)

In order to write down invariant kinetic terms for the gauge fields we have to define a

suitable covariant field strength tensor. This is an issue because the Jacobi identity is not

satisfied and because we have to deal with the new gauge transformations parametrized by

the parameters Ξµα. Indeed, the usual field strength, which follows from the Ricci identity,

[Dµ,Dν ] = −gFµν
M XM ,

Fµν
M = ∂µAν

M − ∂νAµ
M + g X[NP ]

M Aµ
NAν

P , (2.48)

is not fully covariant.3 The lack of covariance can be readily checked by observing that

Fµν
M does not satisfy the Palatini identity,

δFµν
M = 2D[µδAν]

M − 2g X(PQ)
M A[µ

P δAν]
Q , (2.49)

under arbitrary variations δAµ
M . This result shows that Fµν

M transforms under gauge

transformations as

δFµν
M = g ΛP XNP

M Fµν
N − 2g ZM,α(D[µΞν]α + dαPQ A[µ

P δAν]
Q) , (2.50)

3Observe that the covariant derivative is invariant under the tensor gauge transformations, so that the

field strengths contracted with XM are in fact covariant.
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which is not covariant. The standard strategy [11, 20, 16] is therefore to define modified

field strengths,

Hµν
M = Fµν

M + g ZM,α Bµν α , (2.51)

where we introduce the tensor fields Bµν α, which are subject to suitably chosen gauge

transformation rules.

At this point we recall that the invariance transformations in the rigid case implied

that the field strengths Gµν
M transform under a subgroup of Sp(56, R) (c.f. (2.35)). Our

aim is to find a similar symplectic array of field strengths so that these transformations

are generated in the non-abelian case as well. This is not possible based on the variations

of the vector fields Aµ
M , which will never generate the type of fermionic terms contained

in GµνΛ. However, the presence of the tensor fields enables one to achieve this objective,

at least to some extent. Just as in the abelian case, we define an Sp(56, R) array of field

strengths Gµν
M by

Gµν
M ≡

(Hµν
Λ

GµνΣ

)

, (2.52)

so that

G+
µν

Λ = H+
µν

Λ ,

G+
µνΛ = NΛΣ H+

µν
Σ + 2iO+

µνΛ . (2.53)

Note that the expression for GµνΛ is the analogue of (2.37), with Fµν
Λ replaced by Hµν

Λ.

Following [16] we introduce the following transformation rule for Bµνα (contracted with

ZM,α, because only these combinations will appear in the Lagrangian),

ZM,αδBµν α = 2ZM,α(D[µΞν]α + dα NP A[µ
NδAν]

P ) − 2X(NP )
MΛPGµν

N , (2.54)

where DµΞνα = ∂µΞνα − gAµ
MXMα

βΞνβ with XMα
β = −ΘM

γfγα
β the gauge group gen-

erators embedded in the adjoint representation of E7(7). With this variation the modified

field strengths (2.51) are invariant under tensor gauge transformations. Under the vector

gauge transformations we derive the following result,

δG+
µν

Λ = −g ΛP XPN
Λ G+

µν
N − g ΛP XΓ

P
Λ (G+

µν −H+
µν)Γ ,

δG+
µνΛ = −g ΛP XPNΛ G+

µν
N − gNΛΣ ΛP XΓ

P
Σ (G+

µν −H+
µν)Γ ,

δ(G+
µν −H+

µν)Λ = g ΛP (XΓ
PΛ − XΓ

P
Σ NΣΛ) (G+

µν −H+
µν)Γ . (2.55)

Hence δGµν
M = −g ΛP XPN

M Gµν
N , just as the variation of the abelian field strengths

Gµν
M in the absence of charges, up to terms proportional to ΘΛα(Gµν −Hµν)Λ. According

to [16], the latter terms represent a set of field equations. The last equation of (2.55) then

expresses the well-known fact that under a symmetry field equations transform into field

equations. As a result the gauge algebra on these tensors closes according to (2.46), up to

the the same field equation.

Having identified some of the field equations, it is easy to see how the Lagrangian should

be modified. First of all, we replace the abelian field strengths Fµν
Λ in the Lagrangian (2.36)
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by Hµν
Λ, so that

Gµν Λ = i εµνρσ
∂Lvector

∂Hρσ
Λ

. (2.56)

Under general variations of the vector and tensor fields we then obtain the result,

e−1δLvector = −iG+µν
Λ

[

DµδAν
Λ +

1

4
gΘΛα(δBµνα − 2dαPQAµ

P δAν
Q)

]

+ h.c. . (2.57)

From this expression the reader can check that the Lagrangian (2.36) is indeed invariant

under the tensor gauge transformations. Even when including the gauge transformations

of the matter fields, the Lagrangian is, however, not invariant under the vector gauge

transformations. For invariance it is necessary to introduce the following universal terms

to the Lagrangian [16],

Ltop =
1

8
ig εµνρσ ΘΛα Bµν α

(

2∂ρAσ Λ + g XMN Λ Aρ
MAσ

N +
1

4
g ΘΛ

βBρσ β

)

+
1

3
ig εµνρσXMN Λ Aµ

MAν
N

(

∂ρAσ
Λ +

1

4
g XPQ

ΛAρ
P Aσ

Q

)

+
1

6
ig εµνρσXMN

Λ Aµ
MAν

N

(

∂ρAσΛ +
1

4
g XPQΛAρ

P Aσ
Q

)

. (2.58)

The first term represents a topological coupling of the antisymmetric tensor fields with the

magnetic gauge fields, and the last two terms are a generalization of the Chern-Simons-like

terms (2.44) that we encountered in the previous subsection. Under variations of the vector

and tensor fields, this Lagrangian varies into (up to total derivative terms)

e−1δLtop = iH+µνΛ DµδAνΛ +
1

4
igH+µν

Λ ΘΛα(δBµνα − 2dαPQAµ
P δAν

Q) + h.c. . (2.59)

Under the tensor gauge transformations this variation becomes equal to the real part of

2ig H+µνM ΘM
α DµΞνα. This expression equals a total derivative by virtue of the invariance

of the embedding tensor, the constraint (2.16), and the Bianchi identity

D[µHνρ]
M =

1

3
g ZM,α

[

3D[µBνρ]α + 6 dα NP A[µ
N (∂νAρ]

P +
1

3
gX[RS]

P Aν
RAρ]

S)

]

. (2.60)

In this Bianchi identity, DµHνρ
M = ∂µHνρ

M +gAµ
P XPN

MHνρ
N and DρBµνα = ∂ρBµνα−

gAρ
MXMα

βBµνβ . This expression for the Bianchi identity is suitable for our purpose here,

but we note that it is not manifestly covariant in this form, in view of the fact that the

fully covariant derivative of Hµν
M reads,

DρHµν
M = ∂ρHµν

M + gAρ
P XPN

M Gµν
N + gAρ

P XNP
M (Gµν −Hµν)

N , (2.61)

and the covariant field strength of the tensor fields equals

Hµνρ α ≡ 3D[µBνρ] α + 6 dα MN A[µ
M

(

∂νAρ]
N +

1

3
gX[RS]

NAν
RAρ]

S + Gνρ]
N −Hνρ]

N

)

.

(2.62)
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The manifestly covariant form of the Bianchi identity (2.60) then reads,

D[µHνρ]
M =

1

3
g ZM,α Hµνρ α . (2.63)

The various modifications described in this subsection ensure the gauge invariance of

the Lagrangian Lvect + Ltop, provided we include the gauge transformations of the scalar

fields [16]. Furthermore, variation of the tensor fields yields the field equations identified

above,

δLvector + δLtop = −1

4
ig δBµνα ΘΛα

[

(G+µν −H+µν)Λ − (G−µν −H−µν)Λ

]

. (2.64)

This result shows that the Lagrangian is invariant under variations of the tensor fields for

those components that are projected to zero by the embedding tensor component ΘΛα. This

implies that these components of the tensor field do not appear in the action, which plays

a crucial role in ensuring that the number of degrees of freedom will remain unchanged.

A similar phenomenon takes place for the magnetic gauge fields AµΛ. Evaluating the

field equation for the gauge fields Aµ
M one finds that the equation for the magnetic gauge

fields is only proportional to ΘΛαδAµΛ. To see this, one evaluates

δLvector + δLtop =
1

2
i εµνρσ DνGρσ

MΩMNδAµ
N , (2.65)

up to a total derivative and up to terms that vanish as a result of the field equation for

Bµνα. Here one makes use of (2.21). Note that DνGρσ
M = DνGρσ

M , and furthermore that

DνGρσ
Λ = DνHρσ

Λ, up to terms that vanish by virtue of the field equation for Bµνα. Using

the Bianchi identity (2.63) we can thus rewrite (2.65) as follows,

δLvector + δLtop =
1

2
i εµνρσ

[

−DνGρσΛ δAµ
Λ +

1

6
gHνρσα ΘΛαδAµΛ

]

, (2.66)

under the same conditions as stated above. Note that the minimal coupling of the gauge

fields is always proportional to the embedding tensor. Therefore the full Lagrangian does

not depend on those components of the magnetic gauge fields that are projected to zero

by the embedding tensor component ΘΛα.

In the spririt of the analysis presented in [20], one may thus regard the absence of

the components of Bµνα and AµΛ as resulting from an additional gauge invariance (which

would then lead to rank-three tensors fields). However, since these fields will not appear

in the Lagrangian, there is no need for doing so. Somewhat unexpectedly, and not in line

with the general analysis of the vector-tensor hierarchies, there is an additional (local)

invariance which involves only the tensor field [15],

ΘΛαδBµνα ∝ ∆ΛΣρ
ρ (G −H)µνΣ − 6∆(ΛΣ)ρ

[ρ (G −H)µν]Σ , (2.67)

where ∆ΛΣµ
ν = ΘΛα∆α

Σµ
ν . This new invariance has, of course, a role to play in balancing

the degrees of freedom, but in [16] this aspect was bypassed in the analysis. We note that

not all of these gauge invariances have a bearing on the dynamic modes of the theory as

they also act on fields that play an auxiliary role.
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In spite of the modifications above, supersymmetry will be broken by the gauging. In

section 4 we show how supersymmetry can be restored. But first we have to deal with the

effect of the gauge transformations on the scalar fields.

3. The T -tensor

We already stressed in the introduction that the scalar fields parametrize the E7(7)/SU(8)

coset space.4 These fields are described by a space-time dependent matrix V(x) ∈ E7(7)

(taken in the fundamental 56 representation) which transforms from the right under local

SU(8) and from the left under rigid E7(7). The matrix V can be used to elevate the embed-

ding tensor to the so-called T -tensor, which is the SU(8)-covariant, field-dependent, tensor

that appears in the fermionic masslike terms and the scalar potential of the Lagrangian.

The T -tensor is thus defined by,

TM
α[Θ, φ] tα = V−1

M
N ΘN

α (V−1tαV) , (3.1)

where the underlined indices refer to local SU(8). The appropriate representation for (3.1)

is the 56, so that we may write,

TMN
P [Θ, φ] = V−1

M
M V−1

N
N VP

P XMN
P . (3.2)

Because the constraints on the embedding tensor are covariant under E7(7), it is clear that

they induce a corresponding set of SU(8) covariant constraints on the T -tensor.

However, we employ a somewhat unconventional definition of the coset representative

V. Note that the T -tensor is defined in an SU(8) covariant basis, where the maximal

compact SU(8) subgroup of E7(7) takes a block-diagonal form according to the branching

under SU(8), 56 → 28 + 28. This implies the existence of a pseudo-real vector UM

decomposing according to UM = (U ij , Ukl), where ij and kl denote antisymmetric index

pairs with i, j, k, l = 1, . . . , 8. This basis facilitates the coupling to the fermions which

transform under SU(8). On the other hand, just as in the preceding section, we decompose

the gauge fields in a real basis according to V M = (V Λ, VΣ) which branches under the

maximal real SL(8) subgroup of E7(7) according to 56 → 28 + 28′. Therefore we define

56-dimensional complex vectors VM
ij = (VΛ

ij,VΣ ij) and their complex conjugate VM ij =

(VΛ ij ,VΣ
ij), which together constitute a 56 × 56 matrix V,

VM
N =

(

VM
ij ,VM kl

)

=





VΛ
ij VΛ kl

VΣ ij VΣ
kl



 . (3.3)

This matrix thus transforms under rigid E7(7) from the left and under local SU(8) from the

right. It does not really constitute an element of E7(7), but it is equal to a constant matrix

(to account for the different bases adopted on both sides) times a space-time dependent

4Strictly speaking the isotropy group equals SU(8)/Z2.
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element of E7(7). We note the following useful properties of VM
N , which also fix the

normalization,

VM
ij VN ij − VM ij VN

ij = iΩMN ,

ΩMN VM
ij VN kl = i δij

kl ,

ΩMN VM
ij VN

kl = 0 . (3.4)

The sign on the right-hand side is determined by the relative phase between VΛ
ij and

VΛij . Because we have already fixed the definition of the E7(7) transformations on the field

strenghts (Fµν
Λ, GµνΛ), we can no longer adjust this relative phase. Therefore we must

distinguish two different cases characterized by the sign on the right-hand side of (3.4). As

it turns out, supersymmetry selects the sign shown above.

The equations (3.3) and (3.4) imply that the inverse coset representative V−1 reads,

[V−1]M
N = iΩNP

(

− VP ij,VP
kl

)

=





−iVΛ
ij iVΣ ij

iVΛ kl −iVΣ
kl



 . (3.5)

The most relevant restriction is, however, not captured by (3.4), namely that VM
N can be

written as a constant tensor
◦

VM
Z times a space-time dependent E7(7) matrix VZ

N (x). The

latter 56 × 56 matrix, sometimes called the 56-bein, is usually expressed in the form,

VZ
N (x) =





uij
IJ(x) −vklIJ(x)

−vijKL(x) ukl
KL(x)



 . (3.6)

The indices I, J, . . . and i, j, . . . take the values 1, . . . , 8, so that there are 28 antisymmetrized

index pairs representing the matrix indices of V; the row indices are Z = ([IJ ], [KL]), and

the column indices are N = ([ij], [kl]), so as to remain consistent with the conventions

of [1]. The above matrix is pseudoreal and belongs to E7(7) ⊂ Sp(56; R) in the fundamental

representation. We use the convention where uij
IJ = (uij

IJ)∗ and vijIJ = (vijIJ)∗. The

indices i, j, . . . refer to local SU(8) transformations and capital indices I, J, . . . are subject

to rigid E7(7) transformations.

A crucial question regards the nature of the constant matrix
◦

V. Obviously (3.4) leaves

the freedom to perform a redefinition by acting with an Sp(56;R) transformation from the

left. Because VM is defined with a lower index, such a transformation acts as follows,

VΛ
ij → VΛ

Σ VΣ
ij − WΛΣ VΣij ,

VΛij → UΛ
Σ VΣij − ZΛΣ VΣ

ij . (3.7)

These redefinitions lead to an obvious ambiguity in the definition of
◦

V and correspondingly

in the definition of VΛ
ij and VΛij. However, some of this ambiguity can be removed, either

by absorbing an E7(7) transformation emerging on the right into the definition of VP
Z(x),

or by absorbing an GL(28) transformation emerging on the left into the definition of the

gauge fields. The ambiguity thus takes the form of an E7(7)\Sp(56; R)/GL(28) matrix (or
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rather its inverse) [23, 7]. The Lagrangian will implicitly depend on this matrix, as it will

be written in terms of VΛ
ij and VΛij .

Let us now briefly discuss the pseudoreal representation of E7(7). The maximal compact

subgroup SU(8) coincides with the R-symmetry group of four-dimensional N = 8 super-

symmetry which is relevant for the fermions, as the chiral and antichiral gravitino and

spinor fields transform in the 8 + 8, and 56 + 56 representation of that group. Therefore

the pseudoreal basis, based on the SU(8) decomposition 56 → 28+28, is particularly rele-

vant. In the 56 representation, the basis vectors in the 56 representation are then denoted

by (zIJ , zKL) with zIJ = (zIJ )∗; here the indices are antisymmetrized index pairs [IJ ] and

[KL] and I, J,K,L = 1, . . . , 8. The zIJ transform according to the 28 representation of

SU(8). Infinitesimal Sp(56; R) transformations now take the form,

δzIJ = ΛIJ
KL zKL + ΣIJKL zKL ,

δzIJ = ΛIJ
KL zKL + ΣIJKL zKL , (3.8)

where ΛIJ
KL and ΣIJKL are subject to the conditions

(ΛIJ
KL)∗ = ΛIJ

KL = −ΛKL
IJ , (ΣIJKL)∗ = ΣKLIJ . (3.9)

The matrices ΛIJ
KL are associated with the maximal compact U(28) subgroup. In this

basis the invariant skew-symmetric tensor Ω is proportional to (2.15). The E7(7) subgroup

of Sp(56; R) is obtained for fully antisymmetric ΣIJKL with the additional restrictions,

ΛIJ
KL = δ[I

[K ΛJ ]
L] , ΛI

J = −ΛJ
I ,

ΛI
I = 0 , ΣIJKL =

1

24
εIJKLMNPQ ΣMNPQ . (3.10)

The ΛI
J generate the group SU(8). Closure of the full algebra is ensured by the fact that

two tensors Σ1 and Σ2 satisfy the relation

Σ1 IJMN Σ2
MNKL − Σ2 IJMN Σ1

MNKL

=
2

3
δ[I

[K

(

Σ1 J ]MNP Σ2
L]MNP − Σ2J ]MNP Σ1

L]MNP

)

, (3.11)

which follows from the selfduality of Σ. All this is in accord with the branching of the

adjoint representation of E7(7) with respect to its SU(8) subgroup: 133 → 63 + 70.

Before returning to the T -tensor, let us first reconsider the representation of the scalar

fields based on VΛ
ij and VΛij. Under arbitrary variations of the E7(7) matrix (3.6) we note

the result,

[V−1]M
N δVN

P = [V−1]M
Z δVZ

P , (3.12)

which follows from the fact that the constant matrix
◦

V cancels in the expression on the

left-hand side. This observation leads to

VMij δVN
kl ΩMN = −i

(

uij
IJ δukl

IJ − vijIJ δvklIJ

)

,

VMij δVNkl Ω
MN = −i

(

vijIJ δukl
IJ − uij

IJ δvklIJ

)

. (3.13)
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The expression on the right-hand side shows that the equation (3.12) can be decomposed

into the generators of E7(7). The first term should be proportional to the SU(8) generators

in the 28 representation, and the second term should belong to the 70 representation.

Using these restrictions, we derive,

VMij δVN
kl ΩMN =

3

2
δ[i

[k VMj]m δVN
l]m ΩMN ,

VMij δVNkl Ω
MN = VM [ij δVNkl] Ω

MN ,

VM
ij δVN

kl ΩMN = − 1

24
εijklmnpq VMmn δVNpq ΩMN . (3.14)

In what follows these equations play an important role.

Let us now return to the T -tensor. First we draw attention to the fact that, when

treating the embedding tensor as a spurionic object that transforms under the duality

group, the equations of motion, the Bianchi identities and the transformation rules remain

formally invariant under E7(7). Under the latter ΘM
α would transform as ΘM

α tα →
gM

N ΘN
α (g tαg−1), with g ∈ E7(7). The same observation applies to the T -tensor. To

make this more explicit we note that every variation of the coset representative can be

expressed as a (possibly field-dependent) E7(7) transformation acting on V from the right.

For example, a rigid E7(7) transformation acting from the left can be rewritten as a field-

dependent transformation from the right,

V → V ′ = g V = V σ−1 , (3.15)

with σ−1 = V−1 g V ∈ E7(7), but also a supersymmetry transformation can be written in

this form. Consequently, these variations of V induce the following transformation of the

T -tensor,

TMN
P → T ′

MN
P = σM

Q σN
R (σ−1)S

P TQR
S . (3.16)

This implies that the T -tensor constitutes a representation of E7(7). Observe that this is not

an invariance statement; rather it means that the T -tensor (irrespective of the choice for the

corresponding embedding tensor) varies under supersymmetry or any other transformation

in a way that can be written as a (possibly field-dependent) E7(7)-transformation. Note also

that the transformation assignment of the embedding tensor and the T -tensor are opposite

in view of the relationship between g and σ, something that is important in practical

applications.

Subsequently we determine the T -tensor according to (3.2). First we define

ΩNP VN ijXMP
Q VQ

kl = − iQM ij
kl ,

ΩNP VN ijXMP
Q VQkl = − iPM ijkl . (3.17)

We note that QM and PM are subject to constraints,

ZM,α QMij
kl = 0 , ZM,α PMijkl = 0 , (3.18)

by virtue of the quadratic constraint (2.16). The tensor ZM,α was defined in (2.22). For

the convenience of the reader, we also note the relation,

XMN
P VP

ij = PM
ijkl VNkl + QMkl

ij VN
kl . (3.19)
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The generators XM define a subgroup of E7(7) in a certain electric/magnetic duality basis,

which in (3.17) is converted to the pseudoreal representation. Compatibility with the Lie

algebra of E7(7) implies that PM
ijkl is a selfdual SU(8) tensor,

PM
ijkl =

1

24
εijklmnpq PM mnpq , (3.20)

and that QM transforms as a connection associated with SU(8). Hence, QM ij
kl satisfies

the decomposition,

QM ij
kl = δ[i

[k QM j]
l] , (3.21)

with QM
i
j = −QMj

i and QMi
i = 0. Decomposing

TMN
P =

(

TijN
P , T kl

N
P

)

, (3.22)

we write the components of the T -tensor in matrix notation,

Tij =





−2
3δ[k

[p T q]
l]ij

1
24εklrstuvw T tuvw

ij

Tmnpq
ij

2
3δ[r

[m T n]
s]ij



 , (3.23)

where ([kl],
[mn]) are the row indices and ([pq], [rs]) the column indices, and

T ij =





2
3δ[k

[p Tl]
q]ij Tklrs

ij

1
24εmnpqtuvwTtuvw

ij −2
3δ[r

[m Ts]
n]ij



 . (3.24)

Multiplicative factors have been included to make contact with the definitions of [1, 23, 7].

In order to belong to the Lie algebra of E7(7), the matrix blocks in the above expressions

satisfy Tk
kij = 0 and T klmn

ij = T [klmn]
ij. Note that we always use the convention where

complex conjugation is effected by raising and lowering of indices SU(8).

Comparing the above expressions, one can directly establish the following expressions,5

Tk
lij =

3

4
iΩMN QM k

l VN
ij ,

Tklmn
ij =

1

2
iΩMN PM klmn VN

ij . (3.25)

Note that so far no constraints have been imposed on the T -tensor.

We already noted that every variation of the coset representative can be cast in the

form of an E7(7) transformation acting on the right of V. This implies that any variation

of the T -tensor is again proportional to the T -tensor itself (c.f. (3.16)). In view of the

covariance under the SU(8) subgroup, the only relevant variation is therefore

V → V
(

0 Σ

Σ 0

)

. (3.26)

5Unlike in the original definition (3.2) the VM are only proportional to an E7(7) group element, so that

the proportionality factor in (3.25) is not intrinsically defined. Our choice for this factor is such that our

results remain as closely related as possible to the original expressions of [1].
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In this way one can derive,

δTi
jkl = Σjmnp Timnp

kl − 1

24
εjmnpqrst Σimnp Tqrst

kl + Σklmn T j
imn

= 2Σjmnp Timnp
kl − 1

4
δi

j Σmnpq Tmnpq
kl + Σklmn T j

imn ,

δTijkl
mn = − 4

3
Σp[ijk Tl]

pmn − 1

24
εijklpqrs Σmntu T pqrs

tu . (3.27)

This formula can be used for evaluating, for instance, space-time derivatives or supersym-

metry variations of the T -tensor, where one must choose the appropriate expressions for

Σ,Σ ∝ V−1 δV.

Armed with these results we can now proceed and derive the constraints on the T -

tensor induced by the embedding tensor constraints discussed in the previous section. First

of all, as a consequence of (2.12), the T -tensor is constrained to the 912 representation of

E7(7), which decomposes into a 36 and a 420 representation of SU(8). This shows that

there must be a proportionality relation between T klmn
ij and δ[i

[k Tj]
lmn], as both sides

can only contain the 420 representation. Checking the consistency of this with (3.27), it

follows that

T klmn
ij = −4

3
δ[i

[k Tj]
lmn] ,

Ti
jkl = −3

4
A2i

jkl − 3

2
A1

j[k δl]
i , (3.28)

where A2i
jkl = A2i

[jkl], A2i
jki = 0 and A

[ij]
1 = 0, so that Ti

[ijk] = 0. Clearly A1 and

A2 represent the 36 and 420 representations of SU(8), respectively. These results are

not new and were first given in [1], but we prefer to give a self-contained derivation here

to demonstrate how to cast the group-theoretical restrictions into the equations that one

needs for the Lagrangian. The SU(8) tensors A1 and A2 appear in the Lagrangian in the

masslike terms and in the scalar potential that we will present in the next section. In fact,

the supersymmetry of the action to first order of the gauge coupling constant g, depends

crucially on (3.28). Note that none of these results depend on the actual gauge group.

The only requirement is that the embedding tensor satisfies the constraints discussed in

the previous section.

We now turn to a discussion of the constraints that are quadratic in the T -tensor. These

constraints are sufficient for proving the supersymmetry of the action to second order in g.

In section 2 we presented two alternative expressions for the quadratic constraint. One is

(2.16), which can be rewritten as an equation for the T -tensor after suitable multiplication

with V. The results, which coincide with the ones derived in [1, 7], take the form,

T k
lij Tn

mij − Tl
kij Tm

nij = 0 ,

T k
lij Tmnpq

ij +
1

24
εmnpqrstu Tl

kij T rstu
ij = 0 ,

Tirst
vw T jrst

vw − 1

8
δj
i Trstu

vw T rstu
vw = 0 ,

Tijkr
vw Tmnpr

vw − 9

4
δ
[m
[ i Tjk]rs

vw T np]rs
vw +

1

16
δm

i
n
j

p
k Trstu

vw T rstu
vw = 0 , (3.29)
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where in the last identity the antisymmetrization does not include the indices v,w. Sub-

stituting the results of (3.28), these equations reduce to,

A2
k
lij A2n

mij − A2l
kij A2

m
nij − 4A2

(k
lniA

m)i
1 − 4A2(n

mkiA1l)i

− 2δm
l A1niA1

ki + 2δk
nA1liA1

mi = 0 ,

A2
i
jk[m A2

k
npq] + A1jkδ

i
[mA2

k
npq] − A1j[mA2

i
npq]

+
1

24
εmnpqrstu (A2j

ikr A2k
stu + Ajk

1 δr
j A2k

stu − Air
1 A2j

stu) = 0 ,

9A2
m

ikl A2m
jkl − A2

j
klm A2i

klm − δi
j A2

n
klm A2n

klm = 0 ,

A2
r
ijk A2r

mnp − 9A2
[m

r[ij A2k]
np]r − 9 δ[i

[m A2
n

rsj A2k]
p]rs

−9 δ[i j
[mn A2

u
k]rs A2u

p]rs + δm
i

n
j

p
k A2

u
rst A2u

rst = 0 ,(3.30)

where the antisymmetrizations in the last equation apply to the index triples [ijk] and

[mnp]. Note that the representation content of these four constraint equations is 945 +

945 + 63, 3584 + 378 + 378 + 70, 63 and 2352, respectively.

As we intend to demonstrate in the following, consistent gaugings are characterized

by embedding tensors that satisfy two constraints (2.12) and (2.16), one linear and one

quadratic in this tensor. These two constraints lead to corresponding constraints on the

T -tensor, namely (3.28) and (3.30).

4. The Lagrangian and transformation rules

In principle the Lagrangian and transformation rules are known from [1], but we have

to convert to the unconventional definition of the coset representative. Furthermore we

have to make contact with the formalism of [16] to incorporate possible magnetic charges.

The reader who wishes to avoid the complications associated with the magnetic charges,

can simply assume that an appropriate electric/magnetic duality transformation has been

performed so that there are only electric charges (implying that ΘΛα = 0). But as we have

indicated previously, there is a variety of reasons why it is advantageous to remain in a

more general electric/magnetic duality frame.

4.1 Coset geometry

The first issue that we have to address is related to the coset representative of E7(7)/SU(8).

In particular we have to write the composite SU(8) gauge fields Qµ and the tensor Pµ

appearing in the kinetic term for the scalar fields in terms of the VM
ij . This proceeds in

the standard way. We assume the presence of 56 gauge fields Aµ
M which couple to the

charges XM as in (2.5). The covariant derivative,

DµVM
ij = ∂µVM

ij −Qµ kl
ij VM

kl − g Aµ
P XPM

N VN
ij , (4.1)

is covariant with respect to SU(8), with corresponding connection

Qµ ij
kl = δ[i

[k Qµ j]
l] , (4.2)
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with Qµ
i
j = −Qµj

i and Qµi
i = 0. Furthermore it is covariant under the optional gauge

transformations with generators XM and connections Aµ
M . The SU(8) connection is,

however, not an independent field and determined by the condition,

ΩMN VMij DµVN
kl = 0 , (4.3)

which yields

Qµ i
j =

2

3
i(VΛ ik ∂µVΛ jk − VΛ

ik ∂µVΛ
jk) − g Aµ

M QM i
j , (4.4)

where QM i
j is defined by (3.17).

In addition we define an SU(8) tensor Pµ ijkl which is invariant under the optional

gauge group Gg,

Pµ ijkl = iΩMN VMij DµVNkl = i(VΛ ij DµVΛ
kl − VΛ

ij DµVΛ kl) , (4.5)

where the gauge fields contribute through the covariant derivative, leading to

−g Aµ
M PM ijkl. Compatibility with the Lie algebra of E7(7) implies that Pµ ijkl is a selfdual

SU(8) tensor,

Pµ
ijkl =

1

24
εijklmnpq Pµ mnpq . (4.6)

Furthermore we note the useful identity,

DµVM
ij = Pµ

ijkl VMkl . (4.7)

Applying a second derivative to (4.3) (4.7) leads to integrability conditions known as

the Cartan-Maurer equations,

Fµν(Q)i
j = −4

3
P[µ

jklm Pν]iklm − gFµν
M QM i

j ,

D[µPν]
ijkl = −1

2
gFµν

M PM
ijkl , (4.8)

where QM i
j and PM

ijkl are defined by (3.17),

F (Q)µνi
j = ∂µQνi

j − ∂νQµi
j + Q[µi

k Qν]k
j , (4.9)

is the SU(8) field strength, and Fµν
M was already defined in (2.48). These Cartan-Maurer

equations are important for deriving the supersymmetry of the action. The order-g terms

violate the supersymmetry of the original ungauged Lagrangian as they induce new su-

persymmetry variations of the gravitino kinetic terms and the Noether term, which are

proportional to the field strengths Fµν
M and also to the T -tensor.

4.2 The ungauged Lagrangian

In this subsection we briefly introduce the ungauged Lagrangian of N = 8 supergrav-

ity in the notation of this paper. Up to terms proportional to the field equations of the

gauge fields, this Lagrangian is invariant under an E7(7) subgroup of the Sp(56, R) elec-

tric/magnetic duality group. The most crucial part of the Lagrangian concerns the 28
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electric vector fields Aµ
Λ (their magnetic duals AµΛ are absent as we already discussed in

subsection 2.2), which are only invariant under a subgroup of E7(7). The field equations for

these vector fields and the Bianchi identities for their field strengths constitute 56 equa-

tions, given in (2.32), which are subject to electric/magnetic duality transformations. Only

the vector field strengths Fµν
M and the scalar fields contained in VM

ij are subject to the

E7(7) transformations.

The generic gauge field Lagrangian, parametrized as in [16], was given in (2.36) and

contains moment couplings of the field strength Fµν
Λ with an operator OµνΛ which is

quadratic in the fermions. Here we will discuss the explict form of OµνΛ and of NΛΣ. We

start from the 56 field strengths Gµν
M , introduced in susbsection 2.2, which transform

under the E7(7) transformations, which are embedded in the Sp(56, R) electric/magnetic

duality group. From these field strengths and VM
ij and its complex conjugate, we can

construct E7(7) invariant tensors. Specifically, consider the 56 E7(7) invariant tensors,

VM
ijG+

µν
M and VM ijG

+
µν

M , and their anti-selfdual counterparts that follow by hermitean

conjugation. The fermionic bilinears OµνΛ are proportional to the following SU(8) covariant

expression [24, 25, 18],

O+
µν

ij =
1

2

√
2 ψ̄i

ργ
[ργµνγσ]ψj

σ − 1

2
ψ̄ρ kγµνγρχijk − 1

144

√
2 εijklmnpqχ̄klmγµνχnpq , (4.10)

which is selfdual and transforming in the 28 representation of SU(8). Its complex conjugate

is anti-selfdual and transforms in the 28 representation. The fact that only a single tensor

of fermionic bilinears appears in the relation between the field strengths Fµν
Λ and the

dual field strengths GµνΛ, implies that this relation must coincide with the following E7(7)

invariant equation,6

VM
ij G+

µν
M = −1

2
O+

µν
ij . (4.11)

The independent combination, VM ijG
+
µν

M , defines an SU(8) covariant tensor,

F+
µν ij ≡ VM ij G+

µν
M , (4.12)

which will appear in the supersymmetry transformations of the fermions. In this way both

the E7(7) invariance and the SU(8) covariance of the supersymmetry transformations will

be ensured. Using (3.4), we derive the following equation,

G+
µν

M = iΩMN

[

VN
ijF+

µν ij +
1

2
VN ijO+

µν
ij

]

. (4.13)

Furthermore, comparison of (4.11) to (2.37) leads to a determination of NΛΣ and O+
µνΛ,

VΣij NΛΣ = −VΛ
ij ,

VΛij O+
µνΛ =

1

4
iO+

µν
ij . (4.14)

6We follow the argumentation presented in [1]. The proportionality factor on the right-hand side of the

equation follows from supersymmetry.
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These equations hold in any electric/magnetic duality frame and the reader may verify

that (2.38) is indeed consistent with (3.7). Furthermore we note the relation,

[(N − N̄ )−1]ΛΣ = iVΛ
ij VΣ ij . (4.15)

Observe that the imaginary part of the matrix NIJ is negative so that the kinetic term

in (2.36) carries the correct sign. The sign in (4.15) depends crucially on the sign adopted

in (3.4). We also note the following relation

F+
µν

Λ O+µν
Λ = −1

4
F+

µν ij O+µν ij + 2O+
µνΛ O+µν

Σ VΛ
ij VΣ ij . (4.16)

Most of the transformation rules and the Lagrangian can be deduced from [1]. As the

reader may verify, they are consistent with E7(7) and SU(8) covariance. The transformation

rules can be written as follows,

δψµ
i = 2Dµǫi +

1

4

√
2 F̂−

ρσ
ij γρσγµǫj +

1

4
χ̄iklγaχjkl γaγµǫj

+
1

2

√
2 ψ̄µkγ

aχijk γaǫj −
1

576
εijklmnpqχ̄klmγabχnpq γµγabǫj ,

δχijk = −2
√

2 P̂ijkl
µ γµǫl +

3

2
F̂−

µν
[ijγµνǫk] − 1

24

√
2 εijklmnpqχ̄lmnχpqr ǫr ,

δeµ
a = ǭiγaψµi + ǭiγ

aψµ
i ,

δVM
ij = 2

√
2VMkl

(

ǭ[iχjkl] +
1

24
εijklmnpq ǭmχnpq

)

,

δAµ
M = −i ΩMNVN

ij

(

ǭk γµ χijk + 2
√

2 ǭi ψµj

)

+ h.c. . (4.17)

Here and henceforth the caret indicates that the corresponding quantity is covariantized

with respect to supersymmetry. For completeness we record the expressions for P̂µ
ijkl and

F̂+
µνij below,

P̂µ
ijkl = Pµ

ijkl −
√

2

(

ψ̄[i
µ χjkl] +

1

24
εijklmnpq ψ̄µm χnpq

)

,

F̂+
µν ij = F+

µν ij +
1

4
ψ̄ρ

kγργµνχijk −
1

8

√
2 ψ̄ρ i{γµν , γρσ}ψσj . (4.18)

The supercovariantized field strenghts Ĝµν
M then follow from (4.13) by substituting the

second expression on the right-hand side,

Ĝ+
µν

M = iΩMN

[

VN
ijF̂+

µν ij −
1

288

√
2VN ijε

ijklmnpq χ̄klmγµνχnpq

]

. (4.19)

The derivatives Dµ are covariant with respect to Lorentz transformations and SU(8).

For instance, we note,

Dµǫi = ∂µǫi − 1

4
ωµ

abγabǫ
i +

1

2
Qµ

i
jǫ

j . (4.20)
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The spin connection field ωµ
ab is consistent with the expression one would obtain in first-

order formalism, and corresponds to the following value for the torsion tensor,

Dµeν
a −Dνeµ

a = ψ̄[µ
iγaψν]i +

1

12
εµν

ab χ̄ijkγbχijk . (4.21)

Note that we wrote down transformation rules for both electric and magnetic gauge fields

Aµ
M . However, the (ungauged) Lagrangian that we are about to introduce below does not

depend on the magnetic gauge fields AµΛ. In view of what will happen when a gauging is

introduced, we will resolve this by assuming that the Lagrangian is simply invariant under

an additional local gauge symmetry which acts exclusively on the magnetic gauge fields

according to δAµΛ = ΞµΛ, where the ΞµΛ are independent space-time dependent functions.

At this stage this may sound somewhat trivial, but the relevance of this approach will

become clear shortly when switching on general gaugings.

The above transformations (4.17) close under commutation. In particular the com-

mutator of two consecutive supersymmetry transformations δ(ǫ1) and δ(ǫ2) leads to the

following bosonic symmetry variations,

[δ(ǫ1), δ(ǫ2)] = ξµD̂µ + δL(ǫab) + δsusy(ǫ3) + δSU(8)(Λ
i
j) + δgauge(Λ

M ) + δshift(Ξ) . (4.22)

The first term indicates a general coordinate transformation, with parameter ξµ given by

ξµ = 2(ǭ2
iγµǫ1i + ǭ2iγ

µǫ1
i) , (4.23)

whose covariantized form is generated on the matter fields by a supercovariant derivative.

The supersymmetry transformation parameter ǫ3 is equal to

ǫ3i = −
√

2 (ǭ2
jǫ1

k)χijk . (4.24)

The gauge transformation on the abelian gauge fields is expressed in terms of the parameter,

ΛM = −4i
√

2 ΩMN (VN
ij ǭ2iǫ1j − VNij ǭ2

iǫ1
j) , (4.25)

which contributes to both electric and magnetic gauge fields. For these fields the general

coordinate transformation appears in the form −ξν Gµν
M . For the electric gauge field the

Gµν
Λ represents the standard field strength and this term can be written as the linear com-

bination of a general coordinate transformation accompanied by a field-dependent gauge

transformation. For the magnetic gauge fields one can take the same point of view, assum-

ing that GµνΛ is actually the curl of AµΛ, which is a priori possible because the equations

of motion (c.f. (2.32)) imply that GµνΛ is subject to a Bianchi identity. However, one

does not have to take this point of view, as the shift transformation in (4.22), which acts

exclusively on the magnetic gauge fields, can always accomodate any terms that arise in

the supersymmetry commutator on AµΛ.

We refrain from quoting any results for the parameters of the Lorentz and the SU(8)

transformations, as they will not play an important role in what follows. In subsection 4.4

we return to the same supersymmetry commutator in the presence of electric and magnetic

charges and work out some of the results in more detail.
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The full Lagrangian for the ungauged theory can be written as follows,

L = −1

2
eR − 1

2
εµνρσ (ψ̄µ

iγνDρψσ i − ψ̄µ
i←−Dργνψσ i)

− 1

4
ie

{

NΛΣ F+
µν

Λ F+µνΣ − N̄ΛΣ F−
µν

Λ F−µνΣ

}

− 1

12
e (χ̄ijkγµDµχijk − χ̄ijk←−Dµγµχijk) −

1

12
e |Pijkl

µ |2

− 1

12

√
2 e

{

χ̄ijkγ
νγµψν l (Pijkl

µ + P̂ijkl
µ ) + h.c.

}

+ eF+Λ
µν O+µν

Λ + eF−Λ
µν O−µν

Λ − eVΛ
ij VΣij

[

O+
µνΛO

+µν
Σ + O−

µνΛO
−µν
Σ

]

+ L4 , (4.26)

where L4 contains the following SU(8) invariant terms quartic in the fermion fields,

L4 = −1

2
eψ̄µ

[iψν
j] ψ̄µ

iψ
ν
j

+
1

8
e

[

ψ̄ρ
kγµνγρχijk (

√
2 ψ̄µ

iψν
j +

1

2
ψ̄µlγνχ

ijl) + h.c.

]

+
1

288
e

[

εijklmnpqχ̄
ijkγµνχlmn (ψ̄µ

pψν
q +

1

6

√
2ψ̄µrγνχ

pqr) + h.c.

]

+
1

32
eχ̄iklγµχjkl χ̄imnγµχjmn − 1

96
(χ̄ijkγµχijk)

2 . (4.27)

The terms of higher order in the fermions were taken from [1], where their correctness

was established in the presence of the SO(8) gauging. However, in the corresponding

calculations only the generic properties of the T -tensor were used, which do not depend on

the choice of the gauge group. Hence these four-fermion terms must be universal. Observe

that the above Lagrangian applies to any electric/magnetic duality frame because we can

simply redefine the fields VM
ij by an Sp(56, R) matrix.

4.3 Introducing electric and magnetic charges

Charges XM that couple to the gauge fields Aµ
M are introduced in the standard way by

extending covariant derivatives according to (2.5). In principle we include both electric and

magnetic charges and therefore we need both electric gauge fields Aµ
Λ and magnetic gauge

fields AµΛ. The fact that the latter did not appear so far in the Lagrangian (4.26) will not

immediately pose a problem, but a gauging usually induces a breaking of supersymmetry.

Most of the covariant derivatives do not lead to new terms when establishing supersym-

mmetry, but there are variations involving the commutator of the covariant derivatives

that, in the presence of the gauging, lead to the (nonabelian) field strengths Fµν
M defined

in (2.48). These terms, which are proportional to the gauge coupling constant g, are easy

to identify, as they originate exclusively from the fermion kinetic terms. They are induced
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the Cartan-Maurer equations (4.8) whose right-hand sides exhibit the extra terms propor-

tional to the gauge coupling constant g. Collecting these terms leads to the following new

variations,

δL = −e gHµν
M

[
1

4
QMi

j(ǭiγργµνψρj − ǭjγ
µνγρψρ

i)

+
1

144

√
2PMijkl ε

ijklmnpq χ̄mnpγ
µνǫq

]

+ h.c. , (4.28)

where QMi
j and PMijkl were defined in (3.17) and the replacement of Fµν

M by Hµν
M is

based on (3.18).

It is, in principle, well known how these variations can be cancelled [1]. Namely,

one introduces masslike terms and new supersymmetry variations for the fermions. These

modifications generate (among other terms) precisely the type of variations that may can-

cel (4.28). The masslike terms are written as follows,

Lmasslike = e g

{
1

2

√
2 A1 ij ψ̄µ

iγµνψν
j +

1

6
A2i

jkl ψ̄µ
iγµχjkl + Aijk,lmn

3 χ̄ijk χlmn

}

+ h.c. , (4.29)

where

A3
ijk,lmn =

1

144

√
2 εijkpqr[lm A2

n]
pqr , (4.30)

and the new fermion variations are equal to

δgψµ
i =

√
2 g A1

ij γµ ǫj ,

δgχ
ijk = −2g A2l

ijk ǫl . (4.31)

Here A1 and A2 are the components of the T -tensor defined in (3.28).

Furthermore we replace the abelian field strengths in the Lagrangian (4.26) by the field

strengths Hµν
Λ, as described in subsection 2.3, and we include the topological and Chern-

Simons-like terms (2.58). In the supersymmetry variations of the fermions we replace Fµνij

accordingly by a tensor Hµνij defined in analogy with (4.12),

H+
µν ij ≡ VM ij G+

µν
M . (4.32)

Likewise we note three more relations,

VM
ij G+

µν
M = −1

2
O+

µν
ij , (4.33)

G+
µν

M = iΩMN

[

VN
ijH+

µν ij +
1

2
VN ijO+

µν
ij

]

, (4.34)

H+
µν

Λ O+µν
Λ = −1

4
H+

µν ij O+µν ij + 2O+
µνΛ O+µν

Σ VΛ
ij VΣ ij , (4.35)

in direct analogy with (4.11), (4.13) and (4.16), respectively.

These above modifications generate a number of terms similar to (4.28) originating

from the fermion variations proportional to Hµνij in (4.29) and from the fermion varia-

tions (4.31) in the terms Hµν
ΛOµν

Λ in the original Lagrangian (4.26) (upon the replacement
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of the abelian field strengths by the Hµν
Λ). Dropping terms of higher order in the fermions,

these variations take the following form (here we also make use of (3.28)),

δL = e g H+
µν kl

[
1

3
Ti

jkl(ǭiγργµνψρj − ǭjγ
µνγρψρ

i)

+
1

72

√
2Tmnpq

kl εmnpqrstu χ̄rstγ
µνǫu

]

+ h.c. . (4.36)

Using the definition of the T -tensor (3.25) one can show that (4.36) and (4.28) combine to

the expression,

δL = −e g

[

H+
µν

M − G+
µν

M

]

(4.37)

×
[
1

4
QMi

j(ǭiγργµνψρj − ǭjγ
µνγρψρ

i) +
1

6

√
2PM

ijmn ǭiγµνχjmn

]

+ h.c. ,

up to higher-order fermion terms. Here we made use of (4.34). For the electric components,

where M is replaced by Λ, this term vanishes as one can read off from (2.53). The magnetic

components can be cancelled by assigning a suitable supersymmetry variation to the tensor

fields. Making use of (2.64) one can determine this variation directly,

ΘΛα δBµν α = i

(
2

3

√
2PΛ

ijkl ǭ
[i γµν χjkl] + 4QΛ

j
i ǭi γ[µ ψν]

j − h.c.

)

−2XΛ
N

P ΩPQ A[µ
N δAν]

Q . (4.38)

At this point we have obtained a fairly complete version of all the supersymmetry

transformations. In principle one can now continue and verify the cancellation of other

variations of the Lagrangian. The pattern of cancellations is very similar to the pattern

exhibited in [1]. In the following subsection we first summarize the full supersymmetry

transformations and give the complete action. When comparing the results to those for

the electric gaugings, the transformation rules for the magnetic gauge fields and the ten-

sor fields do not enter. To verify the completeness of these transformation rules we will

therefore verify the closure of the supersymmetry commutator for all the bosonic fields.

This commutator will differ from (4.22), as there will be extra terms related to the gauge

transformations and furthermore the shift transformation δshift is replaced by the tensor

gauge transformations.

4.4 Gauged maximal supergravity

In this section we present the complete results for gauged supergravity. The supersymmetry

transformation rules turn out to take the following form,

δψµ
i = 2Dµǫi +

1

4

√
2 Ĥ−

ρσ
ij γρσγµǫj +

1

4
χ̄iklγaχjkl γaγµǫj

+
1

2

√
2 ψ̄µkγaχijk γaǫj −

1

576
εijklmnpqχ̄klmγabχnpq γµγabǫj

+
√

2 g A1
ij γµ ǫj ,
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δχijk = −2
√

2 P̂ijkl
µ γµǫl +

3

2
Ĥ−

µν
[ijγµνǫk] − 1

24

√
2 εijklmnpqχ̄lmnχpqr ǫr

−2g A2l
ijk ǫl ,

δeµ
a = ǭiγaψµi + ǭiγ

aψµ
i ,

δVM
ij = 2

√
2VMkl

(

ǭ[iχjkl] +
1

24
εijklmnpq ǭmχnpq

)

,

δAµ
M = −i ΩMNVN

ij

(

ǭk γµ χijk + 2
√

2 ǭi ψµj

)

+ h.c. ,

δBµν α =
2

3

√
2 tαM

P ΩMQ

(

VP ijVQ kl ǭ
[i γµν χjkl] + 2

√
2VP jkVQ

ik ǭi γ[µ ψν]
j + h.c.

)

− 2tα M
P ΩPN A[µ

M δAν]
N . (4.39)

As was already noted before (see the text preceding (2.54)), we only need the variations

ΘM
α δBµνα, which can conveniently be written as,

ΘM
α δBµν α = i

(
2

3

√
2PMijkl ǭ

[i γµν χjkl] + 4QMj
i ǭi γ[µ ψν]

j − h.c.

)

− 2XMN
P ΩPQ A[µ

N δAν]
Q . (4.40)

The above variations were determined by the substitution of H+
µνij for F+

µνij into (4.17) and

by including the variations (4.31). For the tensor field Bµνα we based ourselves on (4.38).

At this point we return to the commutator of two supersymmetry transformations,

which still takes the form (4.22), but now with the last ‘shift’ transformation on the mag-

netic gauge fields replaced by a full tensor gauge transformation,

[δ(ǫ1), δ(ǫ2)] = ξµD̂µ + δL(ǫab)+ δsusy(ǫ3)+ δSU(8)(Λ
i
j)+ δgauge(Λ

M )+ δtensor(Ξµα) . (4.41)

As before, the first term represents a covariantized general coordinate transformation,

where one must now also include terms of order g induced by the gauging. The parameters

ǫ3 and ΛM of the supersymmetry and gauge transformations appearing on the right-hand

side, were already given in (4.24) and (4.25), respectively.

Because the magnetic vector and the tensor gauge fields are new as compared to

previous treatments, we briefly consider the realization of (4.41) on the vector and tensor

gauge fields. As a non-trivial consistency check on our reuslt, we include all higher-order

fermion contributions in the supersymmetry commutator acting on the vector fields. For

the tensor gauge field we include all bilinears in the fields χijk. In this way we also determine

the parameter of the tensor gauge transformation in (4.41). On the vector gauge fields we

derive,

[δ(ǫ1), δ(ǫ2)]Aµ
M = −ξν

[

Ĝµν
M − 1

2
iΩMNVN

ijψ̄µ
kγνχijk +

1

2
iΩMNVNijψ̄µkγνχ

ijk

]

+ DµΛM − gZM,α Ξµα + δ(ǫ3) , (4.42)

where

ΘM
α Ξµα = −4iQMi

j (ǭ2
iγµǫ1j + ǭ2jγµǫ1

i) , (4.43)
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defines a contribution to the parameters of the tensor gauge transformations. These are not

the only terms, as we will see by evaluating the first term on the right-hand side of (4.42).

We remind the reader that we are only interested in the algebra acting on the fields Aµ
Λ

and ΘΛαAµΛ, as was explained at the end of subsection 2.3. This enables us to replace

ΘΛαĜµνΛ by ΘΛαĤµνΛ, by making use of the field equations (2.64) of the tensor field.

This result applies also to the supercovariant extensions of the field strengths (this can be

deduced from the observation that field equations transform into field equations under a

symmetry of the action). Hence we must evaluate the expression,

− ξν Ĥµν
M = ξν∂νAµ

M + ∂µξνAν
M − Dµ(ξνAν

M )

− iξν ΩMN
[

VN
ij[ψ̄[µ

kγν]χijk +
√

2ψ̄µiψνj] − h.c.
]

− gZM,α ξν
[
Bµνα − tαN

Q ΩPQ Aµ
NAν

P
]

. (4.44)

Combining this expression with the fermionic bilinears in (4.42) shows that the re-

sult decomposes into a space-time diffeomorphism with parameter ξµ, a nonabelian

gauge transformation with parameter −ξµAµ
M , a supersymmetry transformation with

parameter −1
2ξνψνi, and a tensor gauge transformation with parameter ξν(Bµνα −

tαN
Q ΩPQ Aµ

NAν
P ).

Subsequently we evaluate the supersymmetry commutator on the tensor fields

ΘM
αBµνα. Including all terms quadratic in χijk, we derive the following result,

[δ(ǫ1), δ(ǫ2)]ΘM
αBµνα = 2ΘM

α D[µΞν]α + 2XMN
P Ĝµν

NΩPQ ΛQ

+
2

3
i
√

2
(

PMijkl ǭ
[i
3 γµν χjkl] − h.c.

)

+ie εµνρσ ξσ

[
1

3
PM ijkl P̂ρ ijkl +

1

2
QMi

j χ̄iklγρχjkl

]

−2XMN
P ΩPQ A[µ

N [δ(ǫ1), δ(ǫ2)]Aν]
Q + · · · , (4.45)

where ξµ, ΛM , ǫ3 and Ξµα have already been given in (4.23), (4.25), (4.24) and (4.43),

respectively, and the dots represent additional terms linear and quadratic in ψµ
i. To derive

this expression we used many of the results obtained previously. We draw attention to the

fact that we also need the torsion constraint (4.21). Obviously the commutator closes with

respect to these parameters in view of the fact that closure was already established on the

gauge fields Aµ
M . Note also the second term proportional to ΛQ, which is implied by the

last term shown in (2.54).

What remains is to investigate the closure relation for the terms proportional to the

parameter ξµ of the general coordinate transformations. For these terms it is important

to restrict ourselves to the commutator on ΘΛαBµνα, as these are the only components of

the tensor field on which the supersymmetry algebra should be realized (we refer to the

discussion at the end of subsection 2.3). We will first show that closure is indeed achieved

provided the following equation holds,

1

6
ig εµνρσHνρσα ΘΛα + eg

(
1

3
PΛ

ijkl P̂µ ijkl +
1

2
QΛ

i
j χ̄iklγµχjkl

)

+ · · · = 0 . (4.46)
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Here the unspecified terms are proportional to gravitino fields, which are suppressed

throughout this calculation. This equation is simply the field equation associated with

the magnetic vector fields (up to terms that vanish upon using the field equation for the

tensor fields). The first term was aready evaluated in (2.66) and the second term originates

from the minimal coulings which enter through PM
ijkl and Qµi

j . It is perhaps unexpected

that the supersymmetry algebra closes modulo a bosonic field equation that involves space-

time derivatives, but one has to bear in mind that these particular field equations are only

of first order in derivatives. Using the above equation we derive,

ie εµνρσ ξσ

[
1

3
PΛ

ijkl P̂ρ ijkl +
1

2
QΛ

i
j χ̄iklγρχjkl

]

= ΘΛα
[
ξρ∂ρBµνα − 2 ∂[µξρ Bν]ρα

]

+2ΘΛαD[µ

[
ξρ(Bν]ρα − tαN

Q ΩPQ Aν]
NAρ

P )
]
− 2XΛ

N
P Gµν

N ΩPQ ξρAρ
Q

+2XΛ
N

P ΩPQ A[µ
N

[
ξρ∂ρAν]

Q + ∂ν]ξ
ρ Aρ

Q − 2 ξρ(G −H)ν]ρ
Q
]

. (4.47)

This establishes that full closure is indeed realized. The first line represents the required

general coordinate transformation, the second and third term corresponds to the extra

vector and tensor gauge transformations, respectively, with the same parameters as found

in (4.44). Finally, the last term cancels against the similar terms generated on Aν
Q by the

commutator in the last term of (4.45). Here it is important to realize that this commutator

does not fully close, in view of the fact that Aµ
Q includes all the magnetic gauge fields, as

there is no contraction with ΘQ
α. Nevertheless one is still left with a term proportional to

(G −H)νρ
Q, which can be absorbed into a transformation of type (2.67).

The full universal Lagrangian of maximal gauged supergravity in four space-time di-

mensions reads as follows,

L = −1

2
eR − 1

2
εµνρσ (ψ̄µ

iγνDρψσ i − ψ̄µ
i←−Dργνψσ i)

−1

4
ie

{

NΛΣ H+
µν

Λ H+µνΣ − N̄ΛΣ H−
µν

Λ H−µνΣ

}

− 1

12
e (χ̄ijkγµDµχijk − χ̄ijk←−Dµγµχijk) −

1

12
e |Pijkl

µ |2

− 1

12

√
2 e

{

χ̄ijkγ
νγµψν l (Pijkl

µ + P̂ijkl
µ ) + h.c.

}

+ eH+Λ
µν O+µν

Λ + eH−Λ
µν O−µν

Λ − eVΛ
ij VΣij

[

O+
µνΛO

+µν
Σ + O−

µνΛO
−µν
Σ

]

+
1

8
ig εµνρσ ΘΛα Bµν α

(

2∂ρAσ Λ + gXMN Λ Aρ
MAσ

N − 1

4
gΘΛ

βBρσ β

)

+
1

3
ig εµνρσXMN Λ Aµ

MAν
N

(

∂ρAσ
Λ +

1

4
gXPQ

ΛAρ
P Aσ

Q

)

+
1

6
ig εµνρσXMN

Λ Aµ
MAν

N

(

∂ρAσΛ +
1

4
gXPQΛAρ

P Aσ
Q

)

+ g e

{
1

2

√
2 A1 ij ψ̄ i

µγµνψj
ν +

1

6
A2i

jkl ψ̄i
µγµχjkl + Aijk,lmn

3 χ̄ijk χlmn + h.c.

}
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− g2e

{
1

24
A2i

jklA i
2 jkl −

3

4
Aij

1 A1 ij

}

+ L4 , (4.48)

where L4 was given in (4.27). Here we included the scalar potential which appears at order

g2 and which takes the form already derived in [1]. We note that this potential can be

written in various ways,

P(V) = g2

{
1

24
|A2i

jkl|2 − 3

4
|Aij

1 |2
}

=
1

336
g2 MMN

{

8PM
ijklPNijkl + 9QMi

j QNj
i
}

=
1

672
g2

{

XMN
RXPQ

SMMPMNQMRS + 7XMN
QXPQ

NMMP

}

, (4.49)

where we have used the real symmetric field-dependent 56 × 56 matrix MMN , defined by

MMN ≡ VM
ij VN ij + VM ij VN

ij . (4.50)

Note that M is positive definite. Its inverse, MMN , can be written as

MMN = ΩMP ΩNQMPQ , (4.51)

by virtue of (3.4). This shows that det[M] = 1.

In the derivation of (4.49) we made use of the following equations,

XMN
RXPQ

SMMPMNQMRS = MMN
(

2PM
ijklPNijkl − 3QMi

j QNj
i
)

,

XMN
QXPQ

NMMP = MMN
(

2PM
ijklPNijkl + 3QMi

j QNj
i
)

,

MMNPM
ijklPNijkl = 4 |A2l

ijk|2 ,

MMNQMi
j QNj

i = −2 |A2l
ijk|2 − 28 |A1

ij|2 , (4.52)

which can be derived using various results and definitions presented in section 3.

5. Discussion and applications

In this paper we have presented the complete construction of all gaugings of four-

dimensional maximal supergravity. We have shown that gaugings can be completely

characterized in terms of an embedding tensor, subject to a linear and a quadratic con-

straint, (2.12) and (2.9), respectively. A generic gauging can involve both electric and

magnetic charges, together with two-form tensor fields transforming in the 133 represen-

tation of E7(7). The addition of magnetic vector fields and the two-rank tensor fields does

not lead to additional degrees of freedom owing to the presence of extra gauge invariances

associated with these fields. We have presented the full Lagrangian of the theory in (4.48)

and the supersymmetry transformations in (4.39).
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In this last section we briefly demonstrate the group-theoretical approach of this paper

to construct actual gaugings of maximal supergravity in four dimensions. The starting

point is the construction of a solution to the constraints (2.12) and (2.9) on the embedding

tensor ΘM
α. The former one is a linear constraint whose general solution is explicitly

known as the 912-dimensional image of a projector. The most straightforward strategy

will thus be to start from a particular solution to this constraint and impose on it the

quadratic constraint.

Of course, when one wants to see if a specific subgroup of E7(7) can be gauged, it suf-

fices to simply verify whether the constraints are satisfied on the corresponding embedding

tensor. In other cases, when one wants to explore a variety of gaugings, it is often useful to

first select a subgroup G0 ⊂ E7(7) in which the gauge group will be embedded eventually.

This group may be a manifest invariance of the ungauged Lagrangian in a suitable elec-

tric/magnetic duality frame. When this is the case, the gauging will only involve electric

gauge fields and there is no need for introducing dual vector and tensor fields. Branching

the 912 of E7(7) under G0 and scanning through the different irreducible components allows

a systematic study of the quadratic constraint (2.9) and thereby a full determination of the

corresponding admissible gaugings. In that case the closure of the gauge group is already

guaranteed, owing to the equivalent formulation (2.16) of the quadratic constraint, so that

every solution to the linear constraint (2.12) will define a viable gauging.

A central result of this paper is that it is not necessary to restrict G0 to a group

that can be realized as an invariance of the ungauged Lagrangian that serves as a starting

point for the gauging. In that case, one must simply analyze both constraints and the

gauging may eventualy comprise both electric and magnetic charges. It is important to

realize that the scalar potential is insensitive to the issue of electric/magnetic frames, so

that its stationary point can be directly studied. Scanning through the different choices

of G0, it is straightforward to construct the various corresponding gaugings of the four-

dimensional theory. In the following we will illustrate the strategy by first reproducing

the known gaugings, subsequently sketching the construction of gaugings related to flux

compactifications of IIA and IIB supergravity and finally giving some other examples,

including Scherk-Schwarz reductions from higher dimensions.

5.1 Known gaugings

As first examples, let us briefly review the known gaugings embedded in the groups

G0 = SL(8, R) and G0 = E6(6) × SO(1, 1), respectively. It is known that there are cor-

responding ungauged Lagrangians which have these groups as an invariance group. Hence

we can restrict ourselves to analyzing the linear constriant. With the group G0 = SL(8, R),

the branching of the E7(7) representations associated with the vector fields, the adjoint

representation and the embedding tensor, is as follows,

56 → 28 + 28′ ,

133 → 63 + 70 ,

912 → 36 + 420 + 36′ + 420′ , (5.1)
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where the 28 representation in the first decomposition denotes the electric gauge fields.

The possible couplings between vector fields and E7(7) symmetry generators induced by

the various Θ components according to (2.1) can be summarized in the table

28 28′

63 36 + 420 36′ + 420′

70 420′ 420

(5.2)

where the left column represents the E7(7) generators, and the top row represents the

vector fields. The entries correspond to the conjugate representations of the respective

components of the embedding tensor belonging to the 912 representation. Restricting to

gaugings embedded into G0 = SL(8, R), the upper left entry is relevant. However, the 420

would alsocouple to the magnetic gauge fields and the remaining generators of E7(7) so that

the embedding tensor is restricted to live in the 36′ (i.e. the conjugate of the 36 indicated

in the table). Every element in the 36′ defines a viable gauging. A closer analysis shows [7]

that modulo SL(8, R) conjugation the general form of Θ ∈ 36′ is given by

ΘM
α = Θ[AB]

C
D = δC

[A θB]D , θAB = diag{1, . . . , 1
︸ ︷︷ ︸

p

,−1, . . . ,−1
︸ ︷︷ ︸

q

, 0, . . . , 0
︸ ︷︷ ︸

r

} , (5.3)

with A,B = 1, . . . , 8, and reproduces the CSO(p, q, r) gaugings [2, 27], where p+ q + r = 8.

There are 24 inequivalent gaugings of this type.

Choosing the group G0 = E6(6) × O(1, 1), which is group that can be used to identify

gaugings that are related to compactifications from five dimensions, the branchings of the

three relevant representations are,

56 → 1−3 + 27−1 + 27+1 + 1+3 ,

133 → 27−2 + 10 + 780 + 27+2 ,

912 → 78−3 + 27−1 + 351−1 + 351+1 + 27+1 + 78+3 , (5.4)

The first decomposition again captures the split into electric and magnetic vector fields with

the graviphoton transforming in the 1−3 and the 27 gauge fields from the five-dimensional

theory in the 27−1 representation. The couplings between vector fields and E7(7) symmetry

generators induced by the various Θ components can be summarized in a table analogous

to (5.2),

1−3 27−1 27+1 1+3

27−2 78−3 351−1 + 27−1 27+1

780 78−3 351−1 + 27−1 351+1 + 27+1 78+3

10 27−1 27+1

27+2 27−1 351+1 + 27+1 78+3

(5.5)

The table shows that a gauging involving only electric vector fields can only live in the

78+3 representation. Vice versa, every such embedding tensor automatically satisfies the

quadratic constraint (2.16) and thus defines a viable gauging. These are the theories

descending from five dimensions by Scherk-Schwarz reduction [28, 3, 7].
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5.2 Flux gaugings

Here we consider gaugings of N = 8 supergravity that can in principle be generated by

(generalized) toroidal flux compactifications of type-IIB and M-theory. The proper setting

to discuss these theories is a decomposition E7(7) group according to SL(2) × SL(6) and

SL(7), respectively. For the type-IIB theory this embedding is realized as

E7(7) −→ SL(6) × SL(3) −→ SL(6) × SL(2) × SO(1, 1) . (5.6)

The S-duality group coincides with the SL(2) factor. Electric and magnetic charges trans-

form according to the 56 representation which branches as

56 → (6′,1)−2 + (6,2)−1 + (20,1)0 + (6′,2)+1 + (6,1)+2 .

Here, the (6′,1)−2 and (6,2)−1 representations descend from graviphotons and two-forms,

respectively, while the four-form generates gauge fields which, together with their magnetic

duals, constitute the (20,1)0. The couplings between vector fields and E7(7) symmetry

generators is summarized in the following table [9],

(6′,1)−2 (6, 2)−1 (20,1)0 (6′,2)+1 (6,1)+2

(1, 2)−3 (6, 1)−4 (20,2)−3 (6′,3 + 1)−2 (6, 2)−1

(15,1)−2 (6,1)−4 (20,2)−3 (6′+84
′,1)−2 (6+84, 2)−1 (70+20,1)0

(15
′,2)−1 (20,2)−3 (6′+84

′, 1)−2 + (6′, 3)−2 (6+84, 2)−1 (20,3+1)0 + (70
′,1)0 (6′+84

′, 2)+1

(1, 1)0 (6′,1)−2 (6, 2)−1 (20,1)0 (6′,2)+1 (6,1)+2

(35,1)0 (6′+84
′,1)−2 (6+84, 2)−1 (70+70

′+20,1)0 (6′+84
′, 2)+1 (6+84,1)+2

(1, 3)0 (6′,3)−2 (6, 2)−1 (20,3)0 (6′,2)+1 (6,3)+2

(15, 2)+1 (6+84,2)−1 (20, 3+1)0 + (70,1)0 (6′+84
′, 2)+1 (6+84, 1)+2 + (6, 3)+2 (20, 2)+3

(15
′,1)+2 (70

′+20, 1)0 (6′+84
′, 2)+1 (6+84,1)+2 (20, 2)+3 (6′,1)+4

(1,2)+3 (6′,2)+1 (6, 3+1)+2 (20, 2)+3 (6′,1)+4

The entries of the table correspond to the various conjugate representations of the re-

spective components of the embedding tensor. Within the 912 all these components appear

with multiplicity 1 apart from the (6,2)−1 and (6′,2)+1 which appear with multiplicity 2.

It follows from the table that an embedding tensor in the (6′,1)+4 defines a purely electric

gauging which thus automatically satisfies the quadratic constraint. This corresponds to

the theory induced by a five-form flux. A three-form flux on the other hand induces a

component of the embedding tensor in the (20,2)+3 represention, which involves electric

and magnetic gauge fields in the (20,1)0. Consistency thus requires to further impose the

quadratic constraint (2.16) onto Θ, leading to [9]

εΛΣΓΩΠ∆ θΛΣΓ
σ θΩΠ∆

τ = 0 , (5.7)

with σ, τ = 1, 2, Λ,Σ = 1, . . . , 6. Here θΛΣΓ
τ denotes the components of the embedding

tensor corresponding to the (20,2)+3 representation. The above constraint is precisely the

tadpole cancellation condition on the NS-NS and R-R 3-form fluxes.

Gaugings defined by Θ-components with lower SO(1, 1) grading will correspond to

the theories induced by geometric fluxes (twists), non-geometric compactifications, etc. It
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follows from the table that the quadratic constraint (2.16) leads to more and more consis-

tency conditions among these lower Θ-components as they tend to stronger mix electric

and magnetic vector fields. It is, however, straightforward to work out these constraints

by branching (2.16) accordingly (recall also that the total representation content of this

constraint is given by the 133+8645) of E7(7). Another representation in the above table

which is relevant to string compactifications is the (84,1)+2. It corresponds to the geo-

metric flux τΛΣ
Γ which describes a “twisted” six-torus. The quadratic constraint implies

the following condition,

τ[ΛΣ
Γ τΠ]Γ

∆ = 0 . (5.8)

One may wonder which components of the embedding tensor describe the non-geometric-

fluxes QΛ
ΣΓ and RΛΣΓ obtained from τΛΣ

Γ by applying two subsequent T-dualities along

the directions Σ and Λ, respectively [29, 30]. Using the flux/weight correspondence defined

in [31] we can identify these non-geometric fluxes with the following representations:

QΛ
ΣΓ ∈ (84′,2)+1 ; RΛΣΓ ∈ (20,3)0 . (5.9)

We notice that T-duality changes the SL(2, R) representation of the flux on which it acts.

We leave a detailed analysis for future work.

A similar analysis of M-theory fluxes has been performed in [32], see also [33, 34]. In

this case the relevant embedding of the torus GL(7) is according to

E7(7) −→ SL(8) −→ SL(7) × SO(1, 1) . (5.10)

Electric and magnetic charges transform according to the branching

56 → 7′
−3 + 21−1 + 21′

+1 + 7+3 , (5.11)

where the 7′
−3 and the 21−1 descend from graviphotons and antisymmetric tensors, re-

spectively. The couplings between vector fields and E7(7) symmetry generators are given

as [32],

7′
−3 21−1 21′

+1 7+3

7−4 1−7 35−5 (140′ + 7′)−3 (28 + 21)−1

35′
−2 35−5 140′

−3 (21 + 224)−1 (21′ + 224′)+1

480 (140′ + 7′)−3 (21 + 28 + 224)−1 (21′ + 28′ + 224′)+1 (140 + 7)+3

10 7′
−3 21−1 21′

+1 7+3

35+2 (21 + 224)−1 (21′ + 224′)+1 140+3 35′
+5

7′
+4 (28′ + 21′)+1 (140 + 7)+3 35′

+5 1+7

The table shows that an embedding tensor in the 1+7 and in the 35′
+5 representation define

electric gaugings that automatically satisfy the quadratic constraint. They describe the

theories obtained by switching on in eleven dimensions a seven-form g7 and a four-form

flux gΛΣΓ∆, respectively. The former theory has in fact already been considered in [35].

An embedding tensor in the 140+3 corresponds to the parameters τΛΣ
Ξ of a geometric flux

and is subject to the quadratic constraint (2.16),

τ[ΛΣ
ΩτΓ]Ω

Ξ = 0 , (5.12)
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with Λ,Σ = 1, . . . , 7, corresponding to the Jacobi identity of the associated gauge algebra. If

g7 , gΛΣΓ∆ and the geometric flux τΛΣ
Γ are switched on together, the second order constraint

on the embedding tensor, as was shown in [32], yields the additional condition

τ[ΛΣ
∆ gΓΠΩ]∆ = 0 , (5.13)

originally found in [33].

5.3 Gaugings of six-dimensional origin

In this subsection we demonstrate our method for gaugings that arise, in particular, from

a two-fold Scherk-Schwarz reduction from six space-time dimensions [4, 5]. The Scherk-

Schwarz reduction of maximal supergravity from D = 5 to D = 4 spacetime dimensions was

first constructed in [28] and recently this theory was obtained more directly in four space-

time dimensions by gauging [3]. For a general treatment of Scherk-Schwarz reductions in

relation to gauged maximal supergravities, see [7], where the Scherk-Schwarz reduced max-

imal supergravity from D = 6 to D = 5 was constructed as a gauging of five-dimensional

supergravity.

The proper choice for G0 is the maximal subgroup

E7(7) −→ SO(5, 5) × SL(2, R) × O(1, 1) , (5.14)

where SO(5, 5) represents the non-linear symmetry group of maximal supergravity in six

dimensions and SL(2, R) × O(1, 1) is the group corresponding to the reduction on a two-

torus. Electric and magnetic charges branch as

56 → (1,2)−2 + (16,1)−1 + (10,2)0 + (16,1)+1 + (1,2)+2 , (5.15)

where the (1,2)−2 and (16,1)−1 correspond to graviphotons and six-dimensional vectors,

respectively, while the (10,2)0 combines the electric vectors and their magnetic duals

descending from the self-dual two-forms in six-dimensions. Their couplings to the E7(7)

symmetry generators are summarized in the table below,

(1, 2)
−2 (16,1)

−1 (10,2)0 (16, 1)+1 (1, 2)+2

(10,1)
−2 (16,1)

−3 (1 + 45,2)
−2 (16 + 144,1)

−1 (10,2)0
(16,2)

−1 (16,1)
−3 (1 + 45,2)

−2 (16, 3 + 1)
−1 + (144,1)

−1 (10 + 120,2)0 (16, 3 + 1)+1

(1, 3)0 (1, 2)
−2 (16,3)

−1 (10,2)0 (16, 3)+1 (1, 2)+2

(1, 1)0 (1, 2)
−2 (16,1)

−1 (10,2)0 (16, 1)+1 (1, 2)+2

(45,1)0 (45,2)
−2 (16 + 144,1)

−1 (10 + 120,2)0 (16 + 144, 1)+1 (45,2)+2

(16, 2)+1 (16,3 + 1)
−1 (10 + 120,2)0 (16,3 + 1)+1 + (144,1)+1 (1 + 45,2)+2 (16,1)+3

(10, 1)+2 (10,2)0 (16 + 144, 1)+1 (1 + 45,2)+2 (16, 1)+3

This shows that an embedding tensor in the (16,1)+3 defines a consistent electric gauging

corresponding to the theory obtained by giving a T 2 flux to the six-dimensional vector field

strength. A Scherk-Schwarz gauging is defined by an embedding tensor in the (45,2)+2, i.e.

a tensor of type θu,mn with m,n = 1, . . . , 10, u = 1, 2. This corresponds to identifying the

two gauge group generators Xu = θu,mn tmn generating a subgroup of SO(5, 5) associated

with the dependence of the fields on the internal T 2 according to the Scherk-Schwarz
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ansatz, which couple to the two graviphotons. As this gauging a priori involves electric

and magnetic vector fields, the quadratic constraint (2.16) poses a nontrivial restriction,

ǫuw ηmn θu,mp θw,nq = 0 , (5.16)

which implies [Xu,Xv] = 0. This is consistent as these generators must commute in the

multiple Scherk-Schwarz reduction. The complete gauge algebra in four dimensions takes

the form

[Xu, Xv] = 0 , [Xu, Xσ] ∝ θu,mn(Γmn)σ
τ Xτ ,

[Xu, Xmw] ∝ θu,mn ηnp Xpw , [Xσ, Xτ ] ∝ ǫuvθu,mn(Γmnp)στ Xpv , (5.17)

with SO(5, 5) Γ-matrices Γm
στ . We intend to give a detailed analysis of this theory elsewhere.
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